References
- Hu, S. S.; He, Q.; Zhao, Z. F. Anal. Chim. Acta 1991, 258, 103
- Rusling, J. F.; Nassar, A.-E. F. J. Am. Chem. Soc. 1993, 115, 11891 https://doi.org/10.1021/ja00078a030
- Gao, J. X.; Rusling, J. F. J. Electroanal. Chem. 1998, 449, 1 https://doi.org/10.1016/S0022-0728(98)00058-8
- Yang, J.; Hu, N. F.; Rusling, J. F. J. Electroanal. Chem. 1999, 463, 53 https://doi.org/10.1016/S0022-0728(98)00432-X
- Wen, X. L.; Jia, Y. H.; Liu, Z. L. Talanta 1999, 50, 1027 https://doi.org/10.1016/S0039-9140(99)00207-6
- Zhang, S. H.; Wu, K. B. Bull. Korean Chem. Soc. 2004, 25, 1321 https://doi.org/10.5012/bkcs.2004.25.9.1321
- Plavsic, M.; Krznaric, D.; Cosovic, B. Electroanalysis 1994, 6, 469 https://doi.org/10.1002/elan.1140060518
- Summerfield, W.; Goodson, A.; Cooper, I. Food Addit. Contam. 1998, 15, 818 https://doi.org/10.1080/02652039809374716
- Krishnan, A.; Stathis, P.; Permuth, S.; Tokes, L.; Feldman, D. Endocrinology 1993, 132, 2279 https://doi.org/10.1210/en.132.6.2279
- Brotons, J.; Olea-Serrano, M.; Villalobos, M.; Pedraza, V.; Olea, N. Environ. Health Perspect. 1995, 103, 608 https://doi.org/10.2307/3432439
- Howdeshell, K. L.; Hotchkiss, A. K.; Thayer, K. A.; Vandenbergh, J. G.; Vom Saal, F. S. Nature 1999, 401, 763 https://doi.org/10.1038/44517
- Nagel, S. C.; Vom Saal, F. S.; Thayer, K. A.; Dhar, M. G.; Boechler, M.; Welshons, W. V. Environ. Health Perspect. 1997, 105, 70 https://doi.org/10.2307/3433065
- Steinmetz, R.; Mitchner, N. A.; Grant, A.; Allen, D. L.; Bigsby, R. M.; Ben-Jonathan, N. Endocrinology 1998, 139, 2741 https://doi.org/10.1210/en.139.6.2741
- Kuramitz, H.; Nakata, Y.; Kawasaki, M.; Tanaka, S. Chemosphere 2001, 45, 37 https://doi.org/10.1016/S0045-6535(01)00032-7
- Kuramitz, H.; Matsushita, M.; Tanaka, S. Water Research 2004, 38, 2330
- Tanaka, S.; Nakata, Y.; Kimura, T.; Yustiawati, T.; Kawasaki, M.; Kuramitz, H. J. Appl. Electrochem. 2002, 32, 197 https://doi.org/10.1023/A:1014762511528
- Inoue, K.; Kato, K.; Yoshimura, Y.; Makino, T.; Nakazawa, H. J. Chromatogr. B: Biomed. Sci. Appl. 2001, 749, 17 https://doi.org/10.1016/S0378-4347(00)00351-0
- Sajiki, J. J. Chromatogr. B: Biomed. Sci. Appl. 2001, 755, 9 https://doi.org/10.1016/S0378-4347(00)00489-8
- Ishiyama, T.; Shimadu, T.; Nudeshima, C.; Hoshi, J.; Sasaki, Y. Bunseki kagaku (Japan Analyst) 2004, 53, 411 https://doi.org/10.2116/bunsekikagaku.53.411
- Antuono, A. D.; Campo, D. V.; Balbo, A. L.; Sobral, S.; Rezzano, I. J. Agricultural and Food Chem. 2001, 49, 1098 https://doi.org/10.1021/jf000660n
- Hu, C. G.; Hu, S. S. Electrochimica Acta 2004, 49, 405 https://doi.org/10.1016/j.electacta.2003.08.022
- Hu, C. G.; Dang, X. P.; Hu, S. S. J. Electroanal. Chem. 2004, 572, 161 https://doi.org/10.1016/j.jelechem.2004.06.009
- Hu, S. S.; Wu, K. B.; Yi, H. C.; Cui, D. F. Anal. Chim. Acta 2002, 464, 209 https://doi.org/10.1016/S0003-2670(02)00496-8
- He, Q.; Yuan, S.; Chen, C.; Hu, S. S. Materials Science and Engineering C 2003, 23, 621 https://doi.org/10.1016/S0928-4931(03)00053-5
- Zeng, B.; Purdy, W. C. Electroanalysis 1999, 11, 879 https://doi.org/10.1002/(SICI)1521-4109(199908)11:12<879::AID-ELAN879>3.0.CO;2-M
- Stadlober, M.; Kalcher, K.; Raber, C. Electroanalysis 1997, 9, 225 https://doi.org/10.1002/elan.1140090307
- Laviron, E. J. Electroanal. Chem. 1974, 52, 355 https://doi.org/10.1016/S0022-0728(74)80448-1
- Rusling, J. F. Colloids Surfaces A: Physicochem. Eng. Aspects 1997, 123/124, 81 https://doi.org/10.1016/S0927-7757(96)03789-2
- Manne, S.; Cleveland, J. P.; Gaub, H. E.; Stucky, G. D.; Hansma, P. K. Langmuir 1994, 10, 4409 https://doi.org/10.1021/la00024a003
Cited by
- Electrochemical oxidation behavior of bisphenol A at surfactant/layered double hydroxide modified glassy carbon electrode and its determination vol.15, pp.1, 2011, https://doi.org/10.1007/s10008-010-1089-6
- Color prediction from first principle quantum chemistry computations: a case of alizarin dissolved in methanol vol.36, pp.9, 2012, https://doi.org/10.1039/c2nj40327g
- Electrochemical Determination of Bisphenol A at Carbon Nanotube-Doped Titania-Nafion Composite Modified Electrode vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1065
- Fluorescent monomers: “bricks” that make a molecularly imprinted polymer “bright” vol.408, pp.7, 2016, https://doi.org/10.1007/s00216-015-9174-4
- High Sensitive Method for Determination of the Toxic Bisphenol A in Food/Beverage Packaging and Thermal Paper Using Glassy Carbon Electrode Modified with Carbon Black Nanoparticles vol.10, pp.12, 2017, https://doi.org/10.1007/s12161-017-0945-8
- A New Ultrasonic Thermostatic-Assisted Cloud Point Extraction/Spectrophotometric Method for the Preconcentration and Determination of Bisphenol A in Food, Milk, and Water Samples in Contact with Plastic Products vol.10, pp.6, 2017, https://doi.org/10.1007/s12161-016-0737-6
- Faradaic and Capacitive Current Estimation by DPV-ATLD vol.164, pp.12, 2017, https://doi.org/10.1149/2.0881712jes
- Development of an Electrochemical Sensor Based on Covalent Molecular Imprinting for Selective Determination of Bisphenol-A vol.29, pp.11, 2017, https://doi.org/10.1002/elan.201700300
- A micellar sensitized kinetic method for quantification of low levels of bisphenol A in foodstuffs by spectrophotometry vol.9, pp.7, 2017, https://doi.org/10.1039/C6AY03064E
- Graphene Based Electrochemical Sensor and Its Application for Detection and Quantification of Antifibrinolytic Drug Tranexamic Acid vol.159, pp.10, 2012, https://doi.org/10.1149/2.020210jes
- Palladium Nanoparticles Supported on Poly(diallyl dimethyl ammonium chloride)-mesoporous Carbon as Catalysts for Nonylphenol Oxidation vol.162, pp.10, 2015, https://doi.org/10.1149/2.0081512jes
- Sensitive Adsorptive Voltammetric Method for Determination of Bisphenol A by Gold Nanoparticle/Polyvinylpyrrolidone-Modified Pencil Graphite Electrode vol.16, pp.6, 2016, https://doi.org/10.3390/s16060756
- Adsorptive Voltammetry for the Determination of Ochratoxin A Using Enrichment Effect by Cationic Surfactants vol.30, pp.10, 2018, https://doi.org/10.1002/elan.201800226
- Voltammetric determination of malachite green in fish samples based on the enhancement effect of anionic surfactant vol.44, pp.8, 2008, https://doi.org/10.1134/S1023193508080107
- Studies on Enhanced Oxidation of Estrone and Its Voltammetric Determination at Carbon Paste Electrode in the Presence of Cetyltrimethylammonium Bromide vol.28, pp.10, 2005, https://doi.org/10.5012/bkcs.2007.28.10.1729
- Recent Advances in Electroanalysis of Organic Compounds at Carbon Paste Electrodes vol.39, pp.3, 2005, https://doi.org/10.1080/10408340903011853
- Improving the detection of hydrogen peroxide of screen-printed carbon paste electrodes by modifying with nonionic surfactants vol.653, pp.1, 2005, https://doi.org/10.1016/j.aca.2009.08.035
- Electrochemical determination of bisphenol A at Mg–Al–CO3 layered double hydroxide modified glassy carbon electrode vol.55, pp.3, 2005, https://doi.org/10.1016/j.electacta.2009.09.020
- Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A vol.659, pp.1, 2005, https://doi.org/10.1016/j.aca.2009.11.051
- Sensitivity and selectivity determination of BPA in real water samples using PAMAM dendrimer and CoTe quantum dots modified glassy carbon electrode vol.174, pp.1, 2005, https://doi.org/10.1016/j.jhazmat.2009.09.041
- Electrochemical behavior of bisphenol A at glassy carbon electrode modified with gold nanoparticles, silk fibroin, and PAMAM dendrimers vol.170, pp.1, 2005, https://doi.org/10.1007/s00604-010-0396-z
- Voltammetric determination of tert-butylhydroquinone in biodiesel using a carbon paste electrode in the presence of surfactant vol.79, pp.2, 2005, https://doi.org/10.1016/j.colsurfb.2010.05.008
- Hydroxy-Iron/β-cyclodextrin-Film Amperometric Sensor for the Endocrine Disruptor Substance Bisphenol-A in an Aqueous Medium with Reduced Fouling Effects vol.44, pp.11, 2005, https://doi.org/10.1080/00032719.2010.539741
- Amperometric determination of bisphenol A in milk using PAMAM–Fe3O4 modified glassy carbon electrode vol.125, pp.3, 2005, https://doi.org/10.1016/j.foodchem.2010.09.098
- A Simple and Renewable Nanoporous Gold‐based Electrochemical Sensor for Bisphenol A Detection vol.27, pp.12, 2015, https://doi.org/10.1002/elan.201500349
- Sensitive Approach for Voltammetric Determination of Carbendazim Based on the Use of an Anionic Surfactant vol.28, pp.6, 2005, https://doi.org/10.1002/elan.201501069
- Electrochemical sensing and bio-sensing of bisphenol A and detection of its damage to DNA: A comprehensive review vol.15, pp.None, 2005, https://doi.org/10.1016/j.sbsr.2017.07.002
- The Anti-Fouling Effect of Surfactants and Its Application for Electrochemical Detection of Bisphenol A vol.165, pp.16, 2005, https://doi.org/10.1149/2.0401816jes
- Electrochemical Sensing of Bisphenol A on Facet-Tailored TiO2 Single Crystals Engineered by Inorganic-Framework Molecular Imprinting Sites vol.90, pp.5, 2005, https://doi.org/10.1021/acs.analchem.7b04466
- Electrochemical Determination of Bisphenol A in Saliva by a Novel Three-Dimensional (3D) Printed Gold-Reduced Graphene Oxide (rGO) Composite Paste Electrode vol.52, pp.16, 2005, https://doi.org/10.1080/00032719.2019.1620262
- Electrochemical Determination of Bisphenol A in Saliva by a Novel Three-Dimensional (3D) Printed Gold-Reduced Graphene Oxide (rGO) Composite Paste Electrode vol.52, pp.16, 2005, https://doi.org/10.1080/00032719.2019.1620262
- Electroanalysis of Bisphenols A, F, and Z Using Graphene Based Stochastic Microsensors vol.31, pp.7, 2005, https://doi.org/10.1002/elan.201900136
- Review-Electrochemical Sensors for Determination of the Endocrine Disruptor, Bisphenol A vol.167, pp.3, 2005, https://doi.org/10.1149/2.0062003jes
- Development of a new bisphenol A electrochemical sensor based on a cadmium(II) porphyrin modified carbon paste electrode vol.10, pp.53, 2005, https://doi.org/10.1039/d0ra04793g