DOI QR코드

DOI QR Code

Voltammetric Determination of Bisphenol A Using a Carbon Paste Electrode Based on the Enhancement Effect of Cetyltrimethylammonium Bromide (CTAB)

  • Huang, Wensheng (Department of Chemistry, Hubei Institute for Nationalities)
  • Published : 2005.10.20

Abstract

The influence of cetyltrimethylammonium bromide (CTAB) on the electrochemical behavior of bisphenol A at the carbon paste electrode (CPE) was investigated. CTAB, with a hydrophobic C-H chain, can adsorb at the CPE surface via hydrophobic interaction and then change the electrode/solution interface, and finally affects the electrochemical response of bisphenol A, confirming from the remarkable oxidation peak current enhancement. The electrode process of bisphenol A was examined, and then all the experimental parameters which affects the electrochemical response of bisphenol A, such as pH value of the supporting electrolyte, accumulation potential and time, potential scan rate and the concentration of CTAB, were examined. Finally, a sensitive and simple voltammetric method was developed for the determination of bisphenol A. Under the optimum conditions, the oxidation peak current of bisphenol A varied linearly with its concentration over the range from $2.5\;{\times}\;10^{-8}\;to\;1\;{\times}\;10^{-6}$ mol/L, and the detection limit was found to be $7.5\;{\times}\;10^{-9}$ mol/L. This method was successfully employed to determine bisphenol A in some waste plastic samples.

Keywords

References

  1. Hu, S. S.; He, Q.; Zhao, Z. F. Anal. Chim. Acta 1991, 258, 103
  2. Rusling, J. F.; Nassar, A.-E. F. J. Am. Chem. Soc. 1993, 115, 11891 https://doi.org/10.1021/ja00078a030
  3. Gao, J. X.; Rusling, J. F. J. Electroanal. Chem. 1998, 449, 1 https://doi.org/10.1016/S0022-0728(98)00058-8
  4. Yang, J.; Hu, N. F.; Rusling, J. F. J. Electroanal. Chem. 1999, 463, 53 https://doi.org/10.1016/S0022-0728(98)00432-X
  5. Wen, X. L.; Jia, Y. H.; Liu, Z. L. Talanta 1999, 50, 1027 https://doi.org/10.1016/S0039-9140(99)00207-6
  6. Zhang, S. H.; Wu, K. B. Bull. Korean Chem. Soc. 2004, 25, 1321 https://doi.org/10.5012/bkcs.2004.25.9.1321
  7. Plavsic, M.; Krznaric, D.; Cosovic, B. Electroanalysis 1994, 6, 469 https://doi.org/10.1002/elan.1140060518
  8. Summerfield, W.; Goodson, A.; Cooper, I. Food Addit. Contam. 1998, 15, 818 https://doi.org/10.1080/02652039809374716
  9. Krishnan, A.; Stathis, P.; Permuth, S.; Tokes, L.; Feldman, D. Endocrinology 1993, 132, 2279 https://doi.org/10.1210/en.132.6.2279
  10. Brotons, J.; Olea-Serrano, M.; Villalobos, M.; Pedraza, V.; Olea, N. Environ. Health Perspect. 1995, 103, 608 https://doi.org/10.2307/3432439
  11. Howdeshell, K. L.; Hotchkiss, A. K.; Thayer, K. A.; Vandenbergh, J. G.; Vom Saal, F. S. Nature 1999, 401, 763 https://doi.org/10.1038/44517
  12. Nagel, S. C.; Vom Saal, F. S.; Thayer, K. A.; Dhar, M. G.; Boechler, M.; Welshons, W. V. Environ. Health Perspect. 1997, 105, 70 https://doi.org/10.2307/3433065
  13. Steinmetz, R.; Mitchner, N. A.; Grant, A.; Allen, D. L.; Bigsby, R. M.; Ben-Jonathan, N. Endocrinology 1998, 139, 2741 https://doi.org/10.1210/en.139.6.2741
  14. Kuramitz, H.; Nakata, Y.; Kawasaki, M.; Tanaka, S. Chemosphere 2001, 45, 37 https://doi.org/10.1016/S0045-6535(01)00032-7
  15. Kuramitz, H.; Matsushita, M.; Tanaka, S. Water Research 2004, 38, 2330
  16. Tanaka, S.; Nakata, Y.; Kimura, T.; Yustiawati, T.; Kawasaki, M.; Kuramitz, H. J. Appl. Electrochem. 2002, 32, 197 https://doi.org/10.1023/A:1014762511528
  17. Inoue, K.; Kato, K.; Yoshimura, Y.; Makino, T.; Nakazawa, H. J. Chromatogr. B: Biomed. Sci. Appl. 2001, 749, 17 https://doi.org/10.1016/S0378-4347(00)00351-0
  18. Sajiki, J. J. Chromatogr. B: Biomed. Sci. Appl. 2001, 755, 9 https://doi.org/10.1016/S0378-4347(00)00489-8
  19. Ishiyama, T.; Shimadu, T.; Nudeshima, C.; Hoshi, J.; Sasaki, Y. Bunseki kagaku (Japan Analyst) 2004, 53, 411 https://doi.org/10.2116/bunsekikagaku.53.411
  20. Antuono, A. D.; Campo, D. V.; Balbo, A. L.; Sobral, S.; Rezzano, I. J. Agricultural and Food Chem. 2001, 49, 1098 https://doi.org/10.1021/jf000660n
  21. Hu, C. G.; Hu, S. S. Electrochimica Acta 2004, 49, 405 https://doi.org/10.1016/j.electacta.2003.08.022
  22. Hu, C. G.; Dang, X. P.; Hu, S. S. J. Electroanal. Chem. 2004, 572, 161 https://doi.org/10.1016/j.jelechem.2004.06.009
  23. Hu, S. S.; Wu, K. B.; Yi, H. C.; Cui, D. F. Anal. Chim. Acta 2002, 464, 209 https://doi.org/10.1016/S0003-2670(02)00496-8
  24. He, Q.; Yuan, S.; Chen, C.; Hu, S. S. Materials Science and Engineering C 2003, 23, 621 https://doi.org/10.1016/S0928-4931(03)00053-5
  25. Zeng, B.; Purdy, W. C. Electroanalysis 1999, 11, 879 https://doi.org/10.1002/(SICI)1521-4109(199908)11:12<879::AID-ELAN879>3.0.CO;2-M
  26. Stadlober, M.; Kalcher, K.; Raber, C. Electroanalysis 1997, 9, 225 https://doi.org/10.1002/elan.1140090307
  27. Laviron, E. J. Electroanal. Chem. 1974, 52, 355 https://doi.org/10.1016/S0022-0728(74)80448-1
  28. Rusling, J. F. Colloids Surfaces A: Physicochem. Eng. Aspects 1997, 123/124, 81 https://doi.org/10.1016/S0927-7757(96)03789-2
  29. Manne, S.; Cleveland, J. P.; Gaub, H. E.; Stucky, G. D.; Hansma, P. K. Langmuir 1994, 10, 4409 https://doi.org/10.1021/la00024a003

Cited by

  1. Electrochemical oxidation behavior of bisphenol A at surfactant/layered double hydroxide modified glassy carbon electrode and its determination vol.15, pp.1, 2011, https://doi.org/10.1007/s10008-010-1089-6
  2. Color prediction from first principle quantum chemistry computations: a case of alizarin dissolved in methanol vol.36, pp.9, 2012, https://doi.org/10.1039/c2nj40327g
  3. Electrochemical Determination of Bisphenol A at Carbon Nanotube-Doped Titania-Nafion Composite Modified Electrode vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1065
  4. Fluorescent monomers: “bricks” that make a molecularly imprinted polymer “bright” vol.408, pp.7, 2016, https://doi.org/10.1007/s00216-015-9174-4
  5. High Sensitive Method for Determination of the Toxic Bisphenol A in Food/Beverage Packaging and Thermal Paper Using Glassy Carbon Electrode Modified with Carbon Black Nanoparticles vol.10, pp.12, 2017, https://doi.org/10.1007/s12161-017-0945-8
  6. A New Ultrasonic Thermostatic-Assisted Cloud Point Extraction/Spectrophotometric Method for the Preconcentration and Determination of Bisphenol A in Food, Milk, and Water Samples in Contact with Plastic Products vol.10, pp.6, 2017, https://doi.org/10.1007/s12161-016-0737-6
  7. Faradaic and Capacitive Current Estimation by DPV-ATLD vol.164, pp.12, 2017, https://doi.org/10.1149/2.0881712jes
  8. Development of an Electrochemical Sensor Based on Covalent Molecular Imprinting for Selective Determination of Bisphenol-A vol.29, pp.11, 2017, https://doi.org/10.1002/elan.201700300
  9. A micellar sensitized kinetic method for quantification of low levels of bisphenol A in foodstuffs by spectrophotometry vol.9, pp.7, 2017, https://doi.org/10.1039/C6AY03064E
  10. Graphene Based Electrochemical Sensor and Its Application for Detection and Quantification of Antifibrinolytic Drug Tranexamic Acid vol.159, pp.10, 2012, https://doi.org/10.1149/2.020210jes
  11. Palladium Nanoparticles Supported on Poly(diallyl dimethyl ammonium chloride)-mesoporous Carbon as Catalysts for Nonylphenol Oxidation vol.162, pp.10, 2015, https://doi.org/10.1149/2.0081512jes
  12. Sensitive Adsorptive Voltammetric Method for Determination of Bisphenol A by Gold Nanoparticle/Polyvinylpyrrolidone-Modified Pencil Graphite Electrode vol.16, pp.6, 2016, https://doi.org/10.3390/s16060756
  13. Adsorptive Voltammetry for the Determination of Ochratoxin A Using Enrichment Effect by Cationic Surfactants vol.30, pp.10, 2018, https://doi.org/10.1002/elan.201800226
  14. Voltammetric determination of malachite green in fish samples based on the enhancement effect of anionic surfactant vol.44, pp.8, 2008, https://doi.org/10.1134/S1023193508080107
  15. Studies on Enhanced Oxidation of Estrone and Its Voltammetric Determination at Carbon Paste Electrode in the Presence of Cetyltrimethylammonium Bromide vol.28, pp.10, 2005, https://doi.org/10.5012/bkcs.2007.28.10.1729
  16. Recent Advances in Electroanalysis of Organic Compounds at Carbon Paste Electrodes vol.39, pp.3, 2005, https://doi.org/10.1080/10408340903011853
  17. Improving the detection of hydrogen peroxide of screen-printed carbon paste electrodes by modifying with nonionic surfactants vol.653, pp.1, 2005, https://doi.org/10.1016/j.aca.2009.08.035
  18. Electrochemical determination of bisphenol A at Mg–Al–CO3 layered double hydroxide modified glassy carbon electrode vol.55, pp.3, 2005, https://doi.org/10.1016/j.electacta.2009.09.020
  19. Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A vol.659, pp.1, 2005, https://doi.org/10.1016/j.aca.2009.11.051
  20. Sensitivity and selectivity determination of BPA in real water samples using PAMAM dendrimer and CoTe quantum dots modified glassy carbon electrode vol.174, pp.1, 2005, https://doi.org/10.1016/j.jhazmat.2009.09.041
  21. Electrochemical behavior of bisphenol A at glassy carbon electrode modified with gold nanoparticles, silk fibroin, and PAMAM dendrimers vol.170, pp.1, 2005, https://doi.org/10.1007/s00604-010-0396-z
  22. Voltammetric determination of tert-butylhydroquinone in biodiesel using a carbon paste electrode in the presence of surfactant vol.79, pp.2, 2005, https://doi.org/10.1016/j.colsurfb.2010.05.008
  23. Hydroxy-Iron/β-cyclodextrin-Film Amperometric Sensor for the Endocrine Disruptor Substance Bisphenol-A in an Aqueous Medium with Reduced Fouling Effects vol.44, pp.11, 2005, https://doi.org/10.1080/00032719.2010.539741
  24. Amperometric determination of bisphenol A in milk using PAMAM–Fe3O4 modified glassy carbon electrode vol.125, pp.3, 2005, https://doi.org/10.1016/j.foodchem.2010.09.098
  25. A Simple and Renewable Nanoporous Gold‐based Electrochemical Sensor for Bisphenol A Detection vol.27, pp.12, 2015, https://doi.org/10.1002/elan.201500349
  26. Sensitive Approach for Voltammetric Determination of Carbendazim Based on the Use of an Anionic Surfactant vol.28, pp.6, 2005, https://doi.org/10.1002/elan.201501069
  27. Electrochemical sensing and bio-sensing of bisphenol A and detection of its damage to DNA: A comprehensive review vol.15, pp.None, 2005, https://doi.org/10.1016/j.sbsr.2017.07.002
  28. The Anti-Fouling Effect of Surfactants and Its Application for Electrochemical Detection of Bisphenol A vol.165, pp.16, 2005, https://doi.org/10.1149/2.0401816jes
  29. Electrochemical Sensing of Bisphenol A on Facet-Tailored TiO2 Single Crystals Engineered by Inorganic-Framework Molecular Imprinting Sites vol.90, pp.5, 2005, https://doi.org/10.1021/acs.analchem.7b04466
  30. Electrochemical Determination of Bisphenol A in Saliva by a Novel Three-Dimensional (3D) Printed Gold-Reduced Graphene Oxide (rGO) Composite Paste Electrode vol.52, pp.16, 2005, https://doi.org/10.1080/00032719.2019.1620262
  31. Electrochemical Determination of Bisphenol A in Saliva by a Novel Three-Dimensional (3D) Printed Gold-Reduced Graphene Oxide (rGO) Composite Paste Electrode vol.52, pp.16, 2005, https://doi.org/10.1080/00032719.2019.1620262
  32. Electroanalysis of Bisphenols A, F, and Z Using Graphene Based Stochastic Microsensors vol.31, pp.7, 2005, https://doi.org/10.1002/elan.201900136
  33. Review-Electrochemical Sensors for Determination of the Endocrine Disruptor, Bisphenol A vol.167, pp.3, 2005, https://doi.org/10.1149/2.0062003jes
  34. Development of a new bisphenol A electrochemical sensor based on a cadmium(II) porphyrin modified carbon paste electrode vol.10, pp.53, 2005, https://doi.org/10.1039/d0ra04793g