DOI QR코드

DOI QR Code

Flotation-Spectrophotometric Determination of Ag(I) at the 10-7 mol L-1 Level Using Iodide and Ferroin as an Ion-associate

  • Published : 2005.10.20

Abstract

A simple and cost effective method for separation and preconcentration of Ag(I) at the $10^{-7}\;mol\;L^{-1}$ level in the environmental and mineral samples is present. The method is based on the flotation of Ag(I)-iodide complex as an ion-associate with ferroin in pH of 4 from a large volume of an aqueous solution (500 mL) using nheptane. The floated layer was then dissolved in dimethylsulfoxide (DMSO) for the subsequent spectrophotometric determination. Beer's law was obeyed over a range of 2.0 ${\times}$ $10^{-7}$-4.0 ${\times}$ $10^{-6}$ mol $L^{-1}$ with the apparent molar absorptivity of 2.67 ${\times}$ $10^5$ L $mol^{-1}\;cm^{-1}$. The detection limit (n = 5) was 4 ${\times}$ $10^{-8}$ mol $L^{-1}$, and RSD (n = 5) obtained for 2.0 ${\times}$ $10^{-6}$ mol $L^{-1}$ of Ag(I) was 2.2%. The interference effects of a number of elements was studied and found that only $Hg^{2+}$ at low concentration, and $Pb^{2+}$, $Cd^{2+}$, $Cu^{2+}$, and $Fe^{3+}$ ions at moderately high concentrations were interfered. To overcome on these interference effects, the solution was treated with EDTA at a buffering pH of 4 and passed through a column containing Amberlite IR-120 ionexchanger resin, just before the flotation process. The proposed method was applied to determine of Ag(I) in a synthetic waste water, a photographic washing sample and a geological sample and the results was compared with those obtained from the flame atomic absorption spectrometry. The results were satisfactorily comparable with together, so that the applicability of the proposed method was confirmed in encountering with the real samples.

Keywords

References

  1. Patein, G.; Robin, L. Bull. General de Therapeutique 1909, 58, 898
  2. Hill, W. R.; Pillsburry, D. M. Argyria-The Pharmacology of Silver; Williams and Wilkinson: Baltimore, 1939
  3. Dietl, H. W.; Anzil, A. P.; Mehraein, P. Clin. Neuropathol. 1984, 3, 32
  4. Seiler, H. G.; Sigel, H.; Sigel, A. Handbook on Toxicity of Inorganic Compounds; Marcel Dekker, Inc.: New York, 1988
  5. Singh, R. P.; Pambid, E. R. Analyst [London] 1990, 115, 301 https://doi.org/10.1039/an9901500301
  6. Chung, Y. S.; Barnes, R. M. J. Anal. At. Spectrom. 1988, 3, 1079 https://doi.org/10.1039/ja9880301079
  7. Chiba, K.; Inamoto, I.; Saeki, M. J. Anal. At. Spectrom. 1992, 7, 115 https://doi.org/10.1039/ja9920700115
  8. Rehkampor, M.; Halliday, A. N. Talanta 1997, 44, 663 https://doi.org/10.1016/S0039-9140(96)02100-5
  9. Jingyu, H.; Zheng, L.; Haizhou, W. Anal. Chimi. Acta I 2002, 451, 329 https://doi.org/10.1016/S0003-2670(01)01406-4
  10. Anderson, P.; Davidson, C. M.; Littlejohn, D.; Ure, M. A.; Shand, C. A.; Cheshire, M. V. Anal. Chim. Acta 1996, 327, 53 https://doi.org/10.1016/0003-2670(96)00069-4
  11. Jackson, K. W.; Qiao, H. Anal. Chem. 1992, 64, 50R
  12. Jackson, K. W.; Mahmood, T. M. Anal. Chem. 1994, 66, 252R https://doi.org/10.1021/ac00084a012
  13. Toxilogical Profile for Silver; Agency for Toxic Substance and Disease Registry: U. S. Public Health Service, 1996
  14. Mondal, B. C.; Das, D.; Das, A. K. Anal. Chim. Acta 2001, 450, 223 https://doi.org/10.1016/S0003-2670(01)01385-X
  15. Zhang, S.; Pu, Qi.; Liu, P.; Sun, Qi.; Su, Z. Anal. Chim. Acta 2002, 452, 223 https://doi.org/10.1016/S0003-2670(01)01476-3
  16. Arena, M. P.; Porter, M. D.; Fritz, J. S. Anal. Chim. Acta 2003, 482, 197 https://doi.org/10.1016/S0003-2670(03)00173-9
  17. Rahman, M. A.; Kaneco, S.; Amin, Md. N.; Suzuki, T.; Ohta, K. Talanta 2004, 62, 1047 https://doi.org/10.1016/j.talanta.2003.10.035
  18. Caballero, M.; Cela, R.; Peres-Bustamante, J. A. Talanta 1990, 37, 275 https://doi.org/10.1016/0039-9140(90)80056-L
  19. Marczenko, Z. Mikrochim. Acta 1977, II, 651
  20. Marczenko, Z. CRC Crit. Rev. Anal. Chem. 1981, 11, 195
  21. Marczenko, Z.; Jaroz, M. Analyst [London] 1981, 106, 751 https://doi.org/10.1039/an9810600751
  22. Kalinowski, K.; Marczenko, Z. Mikrochim. Acta 1985, I, 167
  23. Marczenko, Z.; Jankowski, K. Anal. Chim. Acta 1985, 176, 185 https://doi.org/10.1016/S0003-2670(00)81645-1
  24. Kalinowski, K.; Marczenko, Z. Anal. Chim. Acta 1986, 186, 331 https://doi.org/10.1016/S0003-2670(00)81806-1
  25. Mathew, L.; Reddy, M. L. P.; Ramamohan, T. R.; Prasad, T.; Lyer, C. S. P.; Damodaran, A. D. Mikrochim. Acta 1997, 127, 125 https://doi.org/10.1007/BF01243176
  26. Bhagavathy, V.; Prasada Rao, T.; Damodaran, A. D. Anal. Chim. Acta 1993, 280, 169 https://doi.org/10.1016/0003-2670(93)80255-J
  27. Chamsaz, M.; Arbab-Zavar, M. H.; Hosseini, M. S. Anal. Lett. 2000, 33, 1625 https://doi.org/10.1080/00032710008543149
  28. Chamsaz, M.; Hosseini, M. S.; Arbab-Zavar, M. H. Chem. Anal. [Warsaw] 2004, 49, 241
  29. Hosseini, M. S.; Nasseri, Y. Anal. Sci. 2003, 19, 1505 https://doi.org/10.2116/analsci.19.1505
  30. Hosseini, M. S.; Hashemi-Moghaddam, H. Anal. Sci. 2004, 20, 1449 https://doi.org/10.2116/analsci.20.1449
  31. Hosseini, M. S.; Hashemi-Moghaddam, H. Talanta, in press
  32. Koh, T.; Sogimoto, T. Anal. Chim. Acta 1996, 333, 167 https://doi.org/10.1016/0003-2670(96)00221-8
  33. Thomson, K. C.; Reynolds, R. J. Atomic Absorption, Fluorescence and Flame Emission Spectroscopy, 2nd ed.; Charles Griffin and Company: England, UK, 1978
  34. Atomic Absorption, Fluorescence and Flame Emission Spectroscopy Thomson, K.C.;Reynolds, R.J.

Cited by

  1. Sensitive Ion-Flotation Separation of Ag(I) Traces Using 2-(2-Methoxyphenyl)benzimidazole before Flame Atomic Absorption Spectrometric Determination in Water vol.40, pp.6, 2012, https://doi.org/10.1002/clen.201100387
  2. Synthesis a new adsorbent of molecularly imprinted polymer for absorb the silver ions from biological sample vol.1, pp.2267-1242, 2013, https://doi.org/10.1051/e3sconf/20130139001
  3. Separation and Preconcentration of Ag(I) in Aqueous Samples by Flotation as an Ion-Associate Using Iodide and Ferroin Followed the Determination by Flame Atomic Absorption Spectrometry vol.97, pp.1-2, 2007, https://doi.org/10.1002/adic.200690082
  4. Flotation Separation and Flame Atomic Absorption Spectrometric Determination of Trace Amount of Lead in Some Environmental Samples vol.97, pp.11-12, 2007, https://doi.org/10.1002/adic.200790112
  5. Mutual Separation and Determination of Th(IV) and U(VI) Using Arsenazo III as a Dye Collector Reagent by Flotation-Spectrophotometric Method vol.54, pp.3, 2005, https://doi.org/10.1002/jccs.200700104
  6. Synthesis of CdS nanoparticles quantum dots capped by 2,2'-dithiodibenzoic acid and study of its interaction with some transition metal ions vol.140, pp.None, 2013, https://doi.org/10.1016/j.jlumin.2013.02.050
  7. Combination of Ultrasonic-Assisted Cloud Point Extraction with Flame AAS for Preconcentration and Determination of Trace Amounts of Silver and Cadmium in Dried Nut and Vegetable Samples vol.9, pp.11, 2005, https://doi.org/10.1007/s12161-016-0505-7
  8. Preconcentration of some heavy metals by Amberlite XAD-4 functionalized with Phenanthroline and investigation of microwave radiation effect on kinetic of adsorption vol.57, pp.4, 2016, https://doi.org/10.1080/19443994.2014.976766
  9. Use of new polymeric composites for preconcentration of trace Ag+ ions from the selected mushroom/vegetables by ultrasound-assisted cloud-point extraction coupled to microvolume UV-Vis spec vol.101, pp.14, 2005, https://doi.org/10.1080/03067319.2019.1691186