DOI QR코드

DOI QR Code

Synthesis of 5,6-Dihydro[1,10]phenanthroline Derivatives and Their Properties as Hole-Blocking Layer Materials for Phosphorescent Organic Light-Emitting Diodes

  • Lee, Hyo-Won (Department of Chemistry, Chungbuk National University) ;
  • An, Jung-Gi (Department of Chemistry, Chungbuk National University) ;
  • Yoon, Hee-Kyoon (Department of Chemistry, Chungbuk National University) ;
  • Jang, Hyo-Sook (Department of Chemistry, School of Molecular Science-BK21 and Center for Molecular Design and Synthesis, KAIST) ;
  • Kim, Nam-Gwang (Department of Chemistry, School of Molecular Science-BK21 and Center for Molecular Design and Synthesis, KAIST) ;
  • Do, Young-Kyu (Department of Chemistry, School of Molecular Science-BK21 and Center for Molecular Design and Synthesis, KAIST)
  • Published : 2005.10.20

Abstract

To develop new hole-blocking materials for phosphorescent organic light-emitting diodes (PhOLEDs), 5,6-dihydro-2,9-diisopropyl-4,7-diphenyl[1,10]phenanthroline (1) and 5,6-dihydro-2,9-diisopropyl-4-(4-methoxyphenyl)-7-phenyl[1,10]phenanthroline (2) were synthesized. While the absorption spectrum of 1 is very similar to that of 2, the photoluminescence spectrum of 1 has the feature of the narrower and blue-shifted blueviolet emission at the peak of 356 nm compared to that of 2. The HOMO and LUMO energy levels of 1 and 2 were estimated from the measurement of cyclic voltammetry, and 1 has the appropriate levels for a holeblocking layer (HBL). The use of 1 as a HBL in a green PhOLED led to good efficiency of 23.6 cd/A at 4.4 mA/$cm^2$.

Keywords

References

  1. Mitschke, U.; Bauerle, P. J. Mater. Chem. 2000, 10, 1471 https://doi.org/10.1039/a908713c
  2. Sibley, S.; Thompson, M. E.; Burrows, P. E.; Forrest, S. R. In Optoelectronic Properties of Inorganic Compounds; Roundhill, D. M.; Fackler, J. P. Jr., Eds.; Plenum Press: New York, 1999; pp 29-54
  3. You, B.; Kim, H. J.; Park, N. G.; Kim. Y. S. Bull. Korean Chem. Soc. 2001, 22, 1005
  4. Kim, J. H.; Lee, H. Bull. Korean Chem. Soc. 2004, 25, 652 https://doi.org/10.5012/bkcs.2004.25.5.652
  5. Cheon, J.-W.; Lee, C.-W.; Geum, N.; Gong, M.-S. Bull. Korean Chem. Soc. 2004, 25, 1202 https://doi.org/10.5012/bkcs.2004.25.8.1202
  6. Kang, J.-G.; Kim, T.-J.; Park, C.; Woo, L. S.; Kim, J. T. Bull. Korean Chem. Soc. 2004, 25, 704 https://doi.org/10.5012/bkcs.2004.25.5.704
  7. Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151 https://doi.org/10.1038/25954
  8. Baldo, M. A.; O'Brien, D. F.; Thompson, M. E.; Forrest, S. R. Phys. Rev. B 1999, 60, 14422 https://doi.org/10.1103/PhysRevB.60.14422
  9. Adamovich, V. I.; Cordero, S. R.; Djurovich, P. I.; Tamayo, A.; Thompson, M. E.; D'Andrade, B. W.; Forrest, S. R. Org. Elec. 2003, 4, 77 https://doi.org/10.1016/j.orgel.2003.08.003
  10. Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 75, 4 https://doi.org/10.1063/1.124258
  11. Ika, M.; Tokito, S.; Sakamoto, Y.; Suzuki, T.; Taga, Y. Appl. Phys. Lett. 2001, 79, 156 https://doi.org/10.1063/1.1385182
  12. Wang, Y.; Herron, N.; Grushin, V. V.; LeCloux, D.; Petrov, V. Appl. Phys. Lett. 2001, 79, 449 https://doi.org/10.1063/1.1384903
  13. Ono, K.; Yanase, T.; Ohkita, M.; Saito, K.; Matsushita, Y.; Naka, S.; Okada, H.; Onnagawa, H. Chem. Lett. 2004, 33, 276 https://doi.org/10.1246/cl.2004.276
  14. Kinoshita, M.; Kita, H.; Shirota, Y. Adv. Func. Mater. 2002, 12, 780 https://doi.org/10.1002/adfm.200290007
  15. Okumoto, K.; Shirota, Y. Chem. Mater. 2003, 15, 699 https://doi.org/10.1021/cm020849+
  16. Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 2001, 79, 2082 https://doi.org/10.1063/1.1400076
  17. Thummel, R. P.; Lefolulon, F.; Cantu, D.; Mahadevan, R. J. Org. Chem. 1984, 49, 2208 https://doi.org/10.1021/jo00186a027
  18. Demas, J. N.; Crosby, G. A. J. Phys. Chem. 1971, 75, 991 https://doi.org/10.1021/j100678a001
  19. Joshi, H. S.; Jamshidi, R.; Tor, Y. Angew. Chem. Int. Ed. 1999, 38, 2722
  20. Ko, S. W.; Jung, B.-J.; Cho, N. S.; Shim, H.-K. Bull. Korean Chem. Soc. 2002, 23, 1235 https://doi.org/10.5012/bkcs.2002.23.9.1235
  21. Chen, Z.-K.; Huang, W.; Wang, L.-H.; Kang, E.-T.; Chen, B. J.; Lee, C. S.; Lee, S. T. Macromolecules 2000, 33, 9015 https://doi.org/10.1021/ma0005670
  22. de Leeuw, D. M.; Simenon, M. M. J.; Brown, A. R.; Einerhand, R. E. F. Synth. Met. 1997, 87, 53 https://doi.org/10.1016/S0379-6779(97)80097-5
  23. Bredas, J. L.; Sibley, R.; Boudreaux, D. S.; Chance, R. R. J. Am. Chem. Soc. 1983, 105, 6555 https://doi.org/10.1021/ja00360a004

Cited by

  1. Structure and Phase Transition of 4,7-Bis-(4′-cyano-biphenyl-4-yl)-[1, 10]phenanthroline vol.45, pp.10-12, 2015, https://doi.org/10.1007/s10870-015-0614-y
  2. Aluminium–salen luminophores as new hole-blocking materials for phosphorescent OLEDs pp.14, 2008, https://doi.org/10.1039/b717754b
  3. Synthesis of 5,6-Dihydro[1,10]phenanthroline Derivatives and Their Properties as Hole-Blocking Layer Materials for Phosphorescent Organic Light-Emitting Diodes. vol.37, pp.10, 2005, https://doi.org/10.1002/chin.200610159
  4. Synthesis and Properties of Soluble and Stable Silyl End-capped Bis-thienylanthracene Oligomers vol.28, pp.11, 2005, https://doi.org/10.5012/bkcs.2007.28.11.1931
  5. Synthesis and Properties of Hexyl End-Capped Thiophene Oligomers Containing Anthracene Moiety in the Center vol.28, pp.7, 2005, https://doi.org/10.5012/bkcs.2007.28.7.1175
  6. Synthesis and Characterization of Bis-Thienyl-9,10-anthracenes Containing Electron Withdrawing 2-Cyanoacrylic Acid or 2-Methylenemalononitrile Group vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.3081