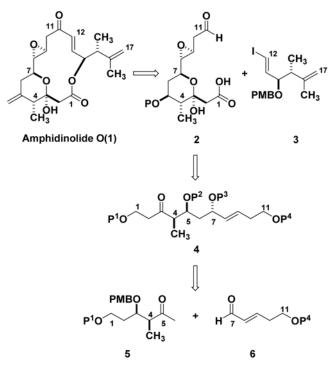
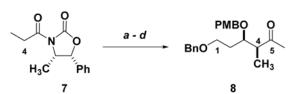
Studies on the Total Synthesis of Amphidinolide O (II): A Stereoselective Synthesis of C1-C11 Fragment

Mi-Yeon Jang, Jong-Woo Kim, and Duck-Hyung Lee*


Department of Chemistry, Sogang University, Seoul 121-742, Korea. *E-mail: dhlee@ccs.sogang.ac.kr Received June 18, 2005

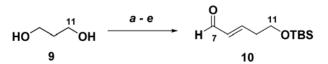
Key Words : Amphidinolide O, Cytotoxic macrolide, Stereoselective synthesis, 1,5-*anti*-Selective aldol reaction, 1,3-*anti*-Selective reduction of β -hydroxy ketone


The amphidinolides were isolated from the marine dinoflagellate *Amphidinium* sp., which produces a host of secondary metabolites endowed with potent cytotoxicity against various cancer cell lines. Amphidinolide O (1) displayed potent *in vitro* cytotoxicity against L1210 marine leukemia cells and human epidermoid carcinoma KB cells with 1.7 and 3.6 μ g/mL of IC50s, respectively.¹ In addition to our recent reports² regarding to the synthesis of C12-C17 and C3-C11 fragments of amphidinolide O (1), we describe herein a new route to diastereoselective synthesis of C1-C11 fragment of 1.

The retrosynthetic analysis of 1 led to the C1-C11 fragment 2 and C12-C17 fragment 3 (Scheme 1). The hemiketal 2 was expected from acyclic precursor 4 which, in turn, would be derived by diastereoselective aldol reaction between ketone 5 and aldehyde 6.

The C1-C6 fragment **8** (equivalent to **5** in scheme 1) was prepared as summarized below (Scheme 2). Enolization of carboximide **7** with Bu₂BOTf and EtN(i-Pr)₂ was followed by reaction with aldehyde to provide the *syn*-aldol product in

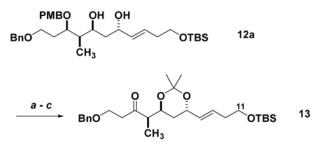
Scheme 1. Retrosynthesis of Amphidinolide O (1).

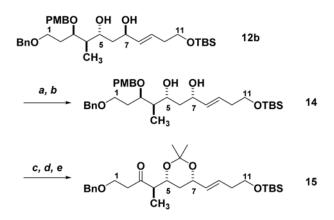

Scheme 2. Synthesis of C1-C6 fragment (8). (a) Bu₂BOTf, EtN(*i*-Pr)₂, CH₂Cl₂, -20° C, 20 min; BnO-(CH₂)₂CHO, -78° C, 1 h, 86%; (b) MeN(OMe)H-HCl, AlMe₃, THF, -10° C to rt, 3 h, 91%; (c) CCl₃C(4-MeO-PhCH₂)=NH, TsOH, CH₂Cl₂, rt, 2 d, 75%; (d) MeMgCl, THF, 0° C, 1 h, 85%.

86% yield (ds = > 97 : 3 by ¹H NMR analysis) (Scheme 2).³ The aldol product was treated with *N*, *O*-dimethylhydroxylamine hydrochloride and Al(Me)₃ to provide the Weinreb amide in 91% yield.⁴ The free hydroxyl group was protected as PMB ether, and finally Weinreb amide was converted to ketone **8** in 85% yield by reaction with MeMgCl.

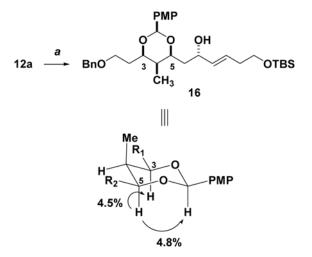

Synthesis of C7-C11 fragment **10** (equivalent to **6** in scheme 1) was completed via 5-step sequences (Scheme 3). Monoprotection of propane-1,3-diol (**9**),⁵ Swern oxidation of the remaining alcohol to aldehyde, and Wittig-olefination was undertaken to give α,β -unsaturated ester,⁶ which was subsequently reduced by DIBAL and oxidized to provide the C7-C11 fragment **10**, another key intermediate in the next aldol reaction.

Aldol-reactions of fragments **8** and **10** were investigated with four chiral boron reagents⁷ in ether at -78 °C (Scheme 4), and the use of chlorodicyclohexylborane provided the desired product with the best diastereoselectivity (**11a** : **11b** = 67 : 33) in 61% (**11a**) and 30% (**11b**) yield, respectively. Hydroxyl group-directed 1,3-*anti* reduction of either **11a** or **11b** with NaBH(OAc)₃ provided the 5,7-*anti* diol **12a** or **12b** in 91% yield.


The (5R,7S)-isomer **12a** was treated with 2,2-dimethoxypropane in the presence of PPTS (Scheme 5). The PMB-


Scheme 3. Synthesis of C7-C11 fragment (10). (a) TBSCl, imidazole, CH_2Cl_2 , rt, 3 d, 87%; (b) DMSO, (COCl)₂, Et₃N, CH_2Cl_2 , -78 °C, 1.5 h, 100%; (c) Ph₃PCHCO₂Et, benzene, 45 °C, 1 h, 89%; (d) DIBAL, CH_2Cl_2 , -78 °C, 30 min., 91%; (e) DMSO, (COCl)₂, Et₃N, CH_2Cl_2 , -78 °C, 1.5 h, 100%.

Scheme 4. Synthesis of **12a/12b**. (a) EtN(*i*-Pr)₂, (*c*-Hex) ₂BCl, Et₂O, -78 °C, 1.5 h, 93%; (b) Me₄NB(OAc)₃H, CH₃CN/AcOH (1 : 1), -20 °C, 2 d, 91%.



Scheme 5. Synthesis of C1-C11 fragment (13). (a) 2,2dimethoxypropane, PPTS(cat), CH₂Cl₂, rt, 1 h, 85%; (b) DDQ, CH₂Cl₂/H₂O (10 : 1), rt, 1 h, 72%; (c) DMP, CH₂Cl₂, pyridine, rt, 40 min, 90%

Scheme 6. Synthesis of C1-C11 fragment (15). (a) MnO_2 , Et_2O , rt, 2 d, 50%; (b) DIBAL, CH_2Cl_2 , -78 °C, 30 min., 90%; (c) 2,2-dimethoxypropane, PPTS(cat), CH_2Cl_2 , rt, 1 h, 90%; (d) DDQ, CH_2Cl_2/H_2O (10 : 1), rt, 1 h, 72%; (e) DMP, CH_2Cl_2 , pyridine, rt, 40 min, 90%.

protecting group was cleaved under standard reaction condition,⁸ and the free hydroxyl group was oxidized with Dess-Martin reagent to give the ketone 13.⁹ However, intramolecular cyclization of acetonide 13, a crucial step toward the total synthesis of amphidinolide O (1), under various acidic conditions resulted in the decomposition of 13 at -78 °C without any indication for the presence of the

Scheme 7. Determination of relative stereochemistry of 12a. (a) DDQ, CH₂Cl₂, 0 °C to rt, 1 h, 65%.

desired tetrahydropyran ring.

The minor (5S,7R)-isomer **12b** was oxidized with manganese dioxide and the ketone was reduced with DIBAL to yield diol **14** (Scheme 6). The conversion of **14** into acetonide **15** was completed by the method in scheme 5. However, the same result was obtained from the intramolecular cyclization of acetonide **15**.

The relative stereochemistry of 12a was determined unambiguously from ¹H NOE spectroscopy of the acetonide 16, which was prepared *via* deprotection of PMB ether of 12a by DDQ and *in situ* cyclization (Scheme 7).

In summary, two ketones 13 and 15, the C1-C11 fragment of Amphidinolide O (1), were prepared stereoselectively via 14 and 16 step sequences in 8.7% and 2.0% overall yield, respectively.

Acknowledgement. This research was assisted financially by Korea Science and Engineering Foundation (R01-2000-000-00048-0).

References

- 1. Ishibashi, M.; Takahashi, M.; kobayashi, J. J. Org. Chem. 1995, 60, 6022-6066.
- (a) Pang, J. H.; Lee, D. H. Bull. Korean Chem. Soc. 2002, 23, 1173-1176.
 (b) Pang, J. H.; Ham, Y. J.; Lee, D. H. Bull. Korean Chem. Soc. 2003, 24, 891-892.
- 3. (a) Mapp, A. K.; Heathcock, C. H. J. Org. Chem. 1999, 64, 23-27.
 (b) Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Cardy, J.; Stout, T. J. J. Am. Chem. Soc. 1990, 112, 7001-7032.
- 4. Jones, T. K.; Reamer, R. A.; Desmond, R.; Mills, S. G. J. Am. Chem. Soc. 1990, 112, 2998-3017.
- (a) Urbanek, R. A.; Sabes, S. F.; Forsyth, C. J. J. Am. Chem. Soc. 1998, 120, 2523-2533.
 (b) Chen, S.-M. L.; Schaub, R. E.; Grudzinskas, C. V. J. Org. Chem. 1978, 43, 3450-3454.
- 6. Nicolaou, K. C.; Webber, S. E. Synthesis 1986, 453-462.
- Bu₂BOTf (ds = 58 : 42, 93% yield); (+)-DIPCl (ds = 45 : 55, 85% yield); (-)-DIPCl (ds = 55 : 45, 85% yield); (n-Ch)₂BCl (ds = 67 : 33, 91% yield).
- Liu, X.; Peter, H.; Seeberger, P. H. Chem. Comm. 2004, 15, 1708-1709.
- 9. Dess, D. B.; Matin, J. C. J. Org. Chem. 1983, 48, 4155-4156.

Communications to the Editor