References
- Sako, M.; Hosokawa, H.; Ito, T.; Iinuma, M. J. Org. Chem. 2004, 69, 2598 https://doi.org/10.1021/jo035791c
- Yamaguchi, S.; Muro, S.; Kobayashi, M.; Miyazawa, M.; Hirai, Y. J. Org. Chem. 2003, 68, 6274 https://doi.org/10.1021/jo034396j
- Benbow, J. W.; Katoch-Rouse, R. J. Org. Chem. 2001, 66, 4965 https://doi.org/10.1021/jo000696e
- Jae, H.-S.; Winn, M.; von Geldern, T. W.; Sorensen, B. K.; Chiou, W. J.; Nguyen, B.; Marsh, K. C.; Opgenorth, T. J. J. Med. Chem. 2001, 44, 3978 https://doi.org/10.1021/jm010237l
- Hellberg, M. R.; Namil, A.; Delgado, P.; David, K. C.; Kessler, T. L.; Graff, G.; Haggard, K. S.; Nixon, J. C. J. Med. Chem. 1999, 42, 267 https://doi.org/10.1021/jm980430o
- Chen, C.-H.; Shaw, C.-Y.; Chen, C.-C.; Tsai, Y.-C. J. Nat. Prod. 2002, 65, 740 https://doi.org/10.1021/np010605o
- Apers, S.; Paper, D.; Burgermeister, J.; Baronikova, S.; Dyck, S. V.; Lemiere, G.; Vlietinck, A.; Pieters, L. J. Nat. Prod. 2002, 65, 718 https://doi.org/10.1021/np0103968
- Li, S. Y.; Fuchino, H.; Kawahara, N.; Sekita, S.; Satake, M. J. Nat. Prod. 2002, 65, 262 https://doi.org/10.1021/np010338m
- Vaillard, S. E.; Postigo, A.; Rossi, R. A. J. Org. Chem. 2002, 67, 8500 https://doi.org/10.1021/jo026404m
- Cheung, W.-H.; Zheng, S.-L.; Yu, W.-Y.; Zhou, G.-C.; Che, C.-M. Org. Lett. 2003, 5, 2535 https://doi.org/10.1021/ol034806q
- Nevado, C.; Ferrer, C.; Echavarren, A. M. Org. Lett. 2004, 6, 3191 https://doi.org/10.1021/ol0486573
- Song, Z. J.; Zhao, M.; Frey, L.; Li, J.; Tan, L.; Chen, C. Y.; Tschaen, D. M.; Tillyer, R.; Grabowski, E. J. J.; Volante, R.; Reider, P. J.; Kato, Y.; Okada, S.; Nemoto, T.; Sato, H.; Akao, A.; Mase, T. Org. Lett. 2001, 3, 3357 https://doi.org/10.1021/ol016601s
- Olivero, S.; Dunach, E. Eur. J. Org. Chem. 1999, 1885
- Grigg, R.; Sansano, J. M.; Santhakumar, V.; Sridharan, V.; Thangavelanthum, R.; Thronton-Pett, M.; Wilson, D. Tetrahedron 1997, 53, 11803 https://doi.org/10.1016/S0040-4020(97)00754-0
- Zaugg, H. E.; Helgren, P. F.; Schaefer, A. D. J. Org. Chem. 1963, 28, 2617 https://doi.org/10.1021/jo01045a032
- Sasaki, K.; Kondo, Y.; Maruoka, K. Angew. Chem. Int. Ed. 2001, 40, 411 https://doi.org/10.1002/1521-3773(20010119)40:2<411::AID-ANIE411>3.0.CO;2-I
- Trost, B. M.; Thiel, O. R.; Tsui, H.-C. J. Am. Chem. Soc. 2002, 124, 11616 https://doi.org/10.1021/ja0277834
- Trost, B. M.; Thiel, O. R.; Tsui, H.-C. J. Am. Chem. Soc. 2003, 125, 13155 https://doi.org/10.1021/ja0364118
- Trost, B. M.; Tsui, H.-C.; Toste, F. D. J. Am. Chem. Soc. 2000, 122, 3534 https://doi.org/10.1021/ja994326n
- Szlosek-Pinaud, M.; Diaz, P.; Martinez, J.; Lamaty, F. Tetrahedron Lett. 2003, 44, 8657 https://doi.org/10.1016/j.tetlet.2003.09.169
- Shanmugam, P.; Rajasingh, P. Tetrahedron 2004, 60, 9283 https://doi.org/10.1016/j.tet.2004.07.067
- Shanmugam, P.; Rajasingh, P. Chem. Lett. 2002, 1212
- Shanmugam, P.; Rajasingh, P. Synlett 2005, 939
- Shanmugam, P.; Rajasingh, P. Tetrahedron Lett. 2005, 46, 3369 https://doi.org/10.1016/j.tetlet.2005.03.086
- Kim, K.-O.; Tae, J. Synthesis 2005, 387
Cited by
- Recent Progress in the Synthesis of 2,3-Dihydrobenzofurans vol.41, pp.5, 2009, https://doi.org/10.1080/00304940903240836
- Highly Regio- and Diastereoselective Construction of Spirocyclopenteneoxindoles through Phosphine-Catalyzed [3 + 2] Annulation of Morita–Baylis–Hillman Carbonates with Isatylidene Malononitriles vol.13, pp.13, 2011, https://doi.org/10.1021/ol201094f
- -Thiophosphinyl Imines and Sulfur Ylides vol.76, pp.19, 2011, https://doi.org/10.1021/jo2008737
- Diels–Alder dimerization of Morita–Baylis–Hillman acetates catalyzed by organocatalysts vol.39, pp.1, 2013, https://doi.org/10.1007/s11164-012-0626-6
- -Quinone Methides Generated from 2-Alkyl-Substituted Phenols vol.356, pp.2-3, 2014, https://doi.org/10.1002/adsc.201300830
- -QMs) and iodonium ylides for the synthesis of 2,3-dihydrobenzofurans pp.2052-4129, 2018, https://doi.org/10.1039/C8QO00950C
- Synthesis of Hexahydrofuro[2,3-b]furan and Hexahydrofuro[2,3-b]pyran Derivatives Starting from Baylis-Hillman Adducts via the Ueno-Stork Reaction vol.27, pp.6, 2006, https://doi.org/10.5012/bkcs.2006.27.6.929
- Synthesis of 3,3-Disubstituted 2,3-Dihydrobenzofuran Derivatives from Baylis—Hillman Adducts. vol.37, pp.6, 2005, https://doi.org/10.1002/chin.200606105
- Synthesis of Isochroman and Tetrahydroisoquinoline Derivatives from Baylis-Hillman Adducts by Radical Cyclization vol.28, pp.12, 2005, https://doi.org/10.5012/bkcs.2007.28.12.2501
- Facile Synthesis of 4-Substituted 3-Exo-methylenechroman Derivatives via Radical Cyclization Starting from Salicylaldehydes vol.28, pp.4, 2005, https://doi.org/10.5012/bkcs.2007.28.4.624
- Advances in the Baylis-Hillman reaction-assisted synthesis of cyclic frameworks vol.64, pp.20, 2008, https://doi.org/10.1016/j.tet.2008.02.087
- Synthesis of Rearranged N-Tosyl Aza-Baylis-Hillman Adducts under Acidic Conditions Catalyzed by CH3SO3H or Montmorillonite K10 vol.30, pp.4, 2005, https://doi.org/10.5012/bkcs.2009.30.4.941
- Mechanism and synthesis of pharmacologically active quinolones from Morita-Baylis-Hillman adducts vol.66, pp.24, 2005, https://doi.org/10.1016/j.tet.2010.04.018
- One-Pot Cascade Michael-Cyclization Reactions of o-Hydroxycinnamaldehydes: Synthesis of Functionalized 2,3-Dihydrobenzofuranes vol.33, pp.8, 2005, https://doi.org/10.5012/bkcs.2012.33.8.2781
- Easy Conversion of Dimethyl α-(Bromomethyl)fumarate into Functionalized Allyl Ethers Mediated by DABCO vol.45, pp.22, 2005, https://doi.org/10.1080/00397911.2015.1093144
- A Facile Approach to 3,4‐Oxepino‐Fused Tricyclic Indoles from MBH‐Acetates of Acetylenic AldehydesviaSuccessive Allylic Substitution/Intramolecular [3+2] Annulation† vol.4, pp.28, 2019, https://doi.org/10.1002/slct.201901496