DOI QR코드

DOI QR Code

Membrane Inlet-based Portable Time-of-flight Mass Spectrometer for Analysis of Air Samples

  • Kim, Tae-Kyu (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Jung, Kyung-Hoon (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Yoo, Seung-Kyo (Withtech, Inc.) ;
  • Jung, Kwang-Woo (Department of Chemistry and Institute of Basic Science, Wonkwang University)
  • Published : 2005.02.20

Abstract

A miniaturized time-of-flight mass spectrometer with an electron impact ionization source and sheet membrane introduction has been developed. The advantages and features of this mass spectrometer include high sensitivity, simple structure, low cost, compact volume with field portability, and ease of operation. A mass resolution of 400 at m/z 78 has been obtained with a 25 cm flight path length. Under optimized conditions, the detection limits for the volatile organic compounds (VOCs) studied were 0.2-10 ppm by volume with linear dynamic ranges greater than three orders of magnitude. The response times for various VOCs using a silicone membrane of 127 $\mu$m thickness were in the range 4.5-20 s, which provides a sample analysis time of less than 1 minute. These results indicate that the membrane introduction/time-of-flight mass spectrometer will be useful for a wide range of field applications, particularly for environmental monitoring.

Keywords

References

  1. Allen, T. M.; Falconer, T. M.; Cisper, M. E.; Borgerding, A. J.; Wilkerson, C. W. Jr. Anal. Chem. 2001, 73, 4830 https://doi.org/10.1021/ac010315c
  2. Bocchini, P.; Pozzi, R.; Andalo, C.; Galletti, G. C. Anal. Chem. 2001, 73, 3824 https://doi.org/10.1021/ac010249e
  3. Ketola, R. A.; Kiuru, J. T.; Tarkiainen, V.; Kotiaho, T.; Sysoev, A. A. Rapid Commun. Mass Spectrom. 2003, 17, 753 https://doi.org/10.1002/rcm.973
  4. Orient, O. J.; Chutjian, A.; Garkanian, V. Rev. Sci. Instrum. 1997, 68, 1393 https://doi.org/10.1063/1.1147947
  5. Ferran, R. J.; Boumsellek, P. S. J. Vac. Sci. Technol. 1996, 14, 1258 https://doi.org/10.1116/1.579938
  6. Short, R. T.; Fries, D. P.; Toler, S. K.; Lembke, C. E.; Byrne, R. H. Meas. Sci. Technol. 1999, 10, 1195 https://doi.org/10.1088/0957-0233/10/12/311
  7. Tabert, A. M.; Griep-Raming, J.; Guymon, A. J.; Cooks, R. G. Anal. Chem. 2003, 75, 5656 https://doi.org/10.1021/ac0346858
  8. Lister, A. K.; Wood, K. V.; Cooks, R. G.; Noon, K. R. Biomedical and Environmental Mass Spectrometry 1989, 18, 1063 https://doi.org/10.1002/bms.1200181206
  9. Moxom, J.; Reilly, P. T. A.; Whitten, W. B.; Ramsey, J. M. Anal. Chem. 2003, 75, 3739 https://doi.org/10.1021/ac034043k
  10. Sinha, M. P.; Tomassian, A. D. Rev. Sci. Instrum. 1991, 62, 2618 https://doi.org/10.1063/1.1142240
  11. Badman, E. R.; Cooks, R. G. J. Mass Spectrom. 2000, 35, 659 https://doi.org/10.1002/1096-9888(200006)35:6<659::AID-JMS5>3.0.CO;2-V
  12. Henry, C. Anal. Chem. News Features Ap. 1, 1999, 264A
  13. Seo, Y. C.; Kim, K. D.; Kim, N. J. Bull. Korean Chem. Soc. 2002, 23, 432 https://doi.org/10.5012/bkcs.2002.23.3.432
  14. Song, K.; Cha, H.; Kim, D.; Min, K. Bull. Korean Chem. Soc. 2004, 25, 101 https://doi.org/10.5012/bkcs.2004.25.1.101
  15. White, A. J.; Blamire, M. G.; Corlett, C. A.; Griffths, B. W.; Martin, D. M.; Spencer, S. B. Mullock, S. J. Rev. Sci. Instrum. 1998, 69, 565 https://doi.org/10.1063/1.1148695
  16. Cornish, T. J.; Cotter, R. J. Anal. Chem. 1997, 69, 4615 https://doi.org/10.1021/ac970479m
  17. Heger, H. J.; Zimmermann, R.; Dorfner, R.; Beckmann, M.; Griebel, H.; Kettrup, A.; Boesl, U. Anal. Chem. 1999, 71, 46 https://doi.org/10.1021/ac980611y
  18. Muhlberger, F.; Zimmermann, R.; Kettrup, A. Anal. Chem. 2001, 73, 3590 https://doi.org/10.1021/ac010023b
  19. Allen, T. M.; Cisper, M. E.; Hemberger, P. H.; Wilkerson, C. W. Int. J. Mass Spectrom. 2001, 212, 197 https://doi.org/10.1016/S1387-3806(01)00487-0
  20. Ketola, R. A.; Kotiaho, T.; Cisper, M. E.; Allen, T. M. J. Mass Spectrom. 2002, 37, 457 https://doi.org/10.1002/jms.327
  21. Allen, T. M.; Falconer, T. M.; Cisper, M. E.; Borgerding, A. J.; Wilderson, C. W. Anal. Chem. 2001, 73, 4830 https://doi.org/10.1021/ac010315c
  22. Bocchini, P.; Pozzi, R.; Andalo, C.; Galletti, G. C. Anal. Chem. 2001, 73, 3824 https://doi.org/10.1021/ac010249e
  23. Riter, L. S.; Takats, Z.; Cooks, R. G. Analyst 2001, 126, 1980 https://doi.org/10.1039/b105857f
  24. Riter, L. S.; Takats, Z.; Charles, L.; Cooks, R. G. Rapid Commun. Mass Spectrom. 2001, 15, 1520 https://doi.org/10.1002/rcm.401
  25. Alberici, R. M.; Sparrapan, R.; Jardim, W. F.; Eberlin, M. N. Environ. Sci. Technol. 2001, 35, 2084 https://doi.org/10.1021/es001814i
  26. Alberici, R. M.; Zampronio, C. G.; Poppi, R. J.; Eberlin, M. N. Analyst 2002, 127, 230 https://doi.org/10.1039/b107222f
  27. Johnson, R. C.; Cooks, R. G.; Allen, T. M.; Cisper, M. E.; Hemberger, P. H. Mass Spectrom. Rev. 2000, 19, 1 https://doi.org/10.1002/(SICI)1098-2787(2000)19:1<1::AID-MAS1>3.0.CO;2-Y
  28. Collins, G. G.; Utley, D. Chem. Industry 1972, 15, 84
  29. Westover, L. B.; Tou, J. C.; Mark, J. H. Anal. Chem. 1974, 46, 568 https://doi.org/10.1021/ac60340a001
  30. Wiley, W. C.; McLaren, I. H. Rev. Sci. Instrum. 1955, 26, 1150 https://doi.org/10.1063/1.1715212
  31. NIST Standard Reference Database 69; November 1998 Release: NIST Chemistry WebBook
  32. Cisper, M. E.; Gill, C. G.; Townsend, L. E.; Hemberger, P. H. Anal. Chem. 1995, 67, 1413 https://doi.org/10.1021/ac00104a017
  33. Ketola, R. A.; Ojala, M.; Sorsa, H.; Kotiaho, T.; Kostiainen, R. Anal. Chim. Acta 1997, 349, 359 https://doi.org/10.1016/S0003-2670(97)00198-0
  34. Overney, F. L.; Enke, C. G. J. Am. Soc. Mass Spectrom. 1996, 7, 93 https://doi.org/10.1016/1044-0305(95)00622-2
  35. Kotiaho, T.; Lauritsen, F. R.; Choudhury, T. K.; Cooks, R. G.; Tou, J. C.; Westover, L. B. Anal. Chem. 1991, 63, 875A https://doi.org/10.1021/ac00018a001

Cited by

  1. Process Analytical Chemistry—Application of Mass Spectrometry in Environmental Analysis: An Overview vol.42, pp.4, 2007, https://doi.org/10.1080/05704920701293810
  2. A new membrane inlet interface of a vacuum ultraviolet lamp ionization miniature mass spectrometer for on-line rapid measurement of volatile organic compounds in air vol.21, pp.22, 2007, https://doi.org/10.1002/rcm.3250
  3. Current literature in mass spectrometry vol.41, pp.2, 2005, https://doi.org/10.1002/jms.949
  4. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  5. Sample preparation for gas chromatographic determination of halogenated volatile organic compounds in environmental and biological samples vol.1216, pp.3, 2005, https://doi.org/10.1016/j.chroma.2008.08.092
  6. Membrane introduction system for trace analysis of volatile organic compounds using a single photon ionization time-of-flight mass spectrometer vol.296, pp.1, 2005, https://doi.org/10.1016/j.ijms.2010.07.016
  7. Characterization of a Membrane Interface for Analysis of Air Samples Using Time-of-flight Mass Spectrometry vol.31, pp.10, 2005, https://doi.org/10.5012/bkcs.2010.31.10.2791