DOI QR코드

DOI QR Code

Binding Geometry of Inclusion Complex as a Determinant Factor for Aqueous Solubility of the Flavonoid/β-Cyclodextrin Complexes Based on Molecular Dynamics Simulations

  • Choi, Young-Jin (Department of Microbial Engineering, Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee, Jong-Hyun (College of Information and Communication, Konkuk University) ;
  • Cho, Kum-Won (Korea Institute of Science and Technology Information) ;
  • Hwang, Sun-Tae (Department of Computer Science, Kookmin University) ;
  • Jeong, Karp-Joo (College of Information and Communication, Konkuk University) ;
  • Jung, Seun-Ho (Department of Microbial Engineering Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2005.08.20

Abstract

A computational study based on molecular dynamics (MD) simulations was performed in order to explain the difference in aqueous solubilities of two flavonoid/$\beta$-cyclodextrin ($\beta$-CD) complexes, hesperetin/$\beta$-CD and naringenin/$\beta$-CD. The aqueous solubility of each flavonoid/$\beta$-CD complex could be characterized by complexwater interaction not by flavonoid-CD interaction. The radial distribution of water around each inclusion complex elucidated the difference of an experimentally observed solubility of each flavonoid/$\beta$-CD complex. The analyzed results suggested that a bulky hydrophobic moiety (-$OCH_3$) of B-ring of hesperetin nearby primary rim of $\beta$-CD was responsible for lower aqueous solubility of the hesperetin/$\beta$-CD complex.

Keywords

References

  1. Taskinen, J. Curr. Opin. Drug Discov. Dev. 2000, 3, 102
  2. Jorgenson, W. L.; Duffy, E. M. Adv. Drug Deliv. Rev. 2002, 54, 355 https://doi.org/10.1016/S0169-409X(02)00008-X
  3. Havsteen, B. H. Pharm. Therap. 2002, 96, 67 https://doi.org/10.1016/S0163-7258(02)00298-X
  4. Ren, W.; Qiao, Z.; Wang, H.; Zhu, L.; Zhang, L. Med. Res. Rev. 2003, 23, 519 https://doi.org/10.1002/med.10033
  5. Zand, R. S. R.; Jenkins, D. J. A.; Diamandis, E. P. J. Chromatogr. B 2002, 777, 219 https://doi.org/10.1016/S1570-0232(02)00213-1
  6. Hedges, A. R. Chem. Rev. 1998, 98, 2035 https://doi.org/10.1021/cr970014w
  7. Uekama, K.; Hirayama, F.; Irie, T. Chem. Rev. 1998, 98, 2045 https://doi.org/10.1021/cr970025p
  8. Tommasini, S.; Raneri, D.; Ficarra, R.; Calabro, M. L.; Stancanelli, R.; Ficarra, P. J. Pharm. Biomed. Anal. 2004, 35, 379 https://doi.org/10.1016/S0731-7085(03)00647-2
  9. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187 https://doi.org/10.1002/jcc.540040211
  10. Kuttel, M.; Brady, J. W.; Naidoo, K. J. J. Comput. Chem. 2002, 23, 1236 https://doi.org/10.1002/jcc.10119
  11. Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. J. Chem. Phys. 1953, 21, 1087 https://doi.org/10.1063/1.1699114
  12. Caflisch, A.; Fischer, S.; Karplus, M. J. Comput. Chem. 1997, 18, 723 https://doi.org/10.1002/(SICI)1096-987X(19970430)18:6<723::AID-JCC1>3.0.CO;2-U
  13. Jorgensen, W. L. J. Chem. Phys. 1982, 77, 4156 https://doi.org/10.1063/1.444325
  14. Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089 https://doi.org/10.1063/1.464397
  15. Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23, 327 https://doi.org/10.1016/0021-9991(77)90098-5
  16. Feller, S. E.; Zhang, Y.; Pastor, R. W.; Brooks, B. R. J. Chem. Phys. 1995, 103, 4613 https://doi.org/10.1063/1.470648

Cited by

  1. Synthesis of Naringenin Amino Acid Esters as Potential CDK2 Inhibitors vol.26, pp.12, 2005, https://doi.org/10.5012/bkcs.2005.26.12.2065
  2. Catalytic Methanolysis Induced by Succinoglycan, a Rhizobial Exopolysaccharide vol.27, pp.6, 2006, https://doi.org/10.5012/bkcs.2006.27.6.921
  3. Efficiency of Rotational Operators for Geometric Manipulation of Chain Molecules vol.28, pp.10, 2005, https://doi.org/10.5012/bkcs.2007.28.10.1705
  4. Synthesis of 4-Sulfamoylapigenin as a Potential Antiproliferative Agent vol.28, pp.5, 2005, https://doi.org/10.5012/bkcs.2007.28.5.723
  5. Methanolysis of 7-Acetoxy-4-Methylcoumarin Catalyzed by Cyclosophoraoses Isolated from Rhizobium meliloti vol.29, pp.1, 2005, https://doi.org/10.5012/bkcs.2008.29.1.228
  6. Structure, solvation, and dynamics of Mg2+, Ca2+, Sr2+, and Ba2+ complexes with 3-hydroxyflavone and perchlorate anion in acetonitrile medium: A molecular d vol.140, pp.19, 2005, https://doi.org/10.1063/1.4875591
  7. Binding mode and free energy prediction of fisetin/β-cyclodextrin inclusion complexes vol.10, pp.None, 2014, https://doi.org/10.3762/bjoc.10.296
  8. Mono-6-Deoxy-6-Aminopropylamino-β-Cyclodextrin on Ag-Embedded SiO2 Nanoparticle as a Selectively Capturing Ligand to Flavonoids vol.9, pp.10, 2005, https://doi.org/10.3390/nano9101349