DOI QR코드

DOI QR Code

Kinetics and Mechanism of Alkaline Hydrolysis of [(Methoxy)(p-substituted styryl)-carbene] Pentacarbonyl Chromium(0) Complexes in Aqueous Acetonitrile

  • Shin, Gap-Cheol (Department of Chemistry, Gyeongsang National University) ;
  • Hwang, Jae-Young (Department of Chemistry, Gyeongsang National University) ;
  • Yang, Ki-Yull (Department of Chemical Education and the Research Institute of Natual Science, Gyeongsang National University) ;
  • Koo, In-Sun (Department of Chemical Education and the Research Institute of Natual Science, Gyeongsang National University) ;
  • Lee, Ik-Choon (Department of Chemistry, Inha University)
  • Published : 2005.12.20

Abstract

Kinetic studies have been performed for alkaline hydrolysis of a series of [(methoxy)(p-substituted styryl)carbene]pentacarbonyl chromium(0) complexes ($(CO)_5$Cr=$C(OCH_3)CH=CHC_6H_4X$, X = p-$OCH_3$, p-$CH_3$, H, p-Cl, p-$NO_2$). Second-order rate constants $(k_{{OH}^-})$ for the alkaline hydrolysis in 50% acetonitrile-water(v/v) were determined spectrophotometrically at various temperatures. At a low pH region (pH < 7.5), the observed rate constant $(k_{obs})$ remained constant with a small value, while in a high pH region (pH > 9.5), $k_{obs}$ increases linearly with increasing the pH of the medium. The second-order rate constants $(k_{{OH}^-})$ increase as the substituent X changes from a strong electron donating group to a strong electron withdrawing group. The Hammett plot obtained for the alkaline hydrolysis is consisted of two intersecting straight lines. The nonlinear Hammett plot might be interpreted as a change in the rate-determining step. However, the fact that the corresponding Yukawa-Tsuno plot is linear with $\rho$ and r values of 0.71 and 1.14, respectively indicates that the nonlinear Hammett plot is not due to a change in the rate-determing step but is due to ground-state stabilization through resonance interaction. The positive $\rho$ value suggests that nucleophilic attack by $OH^-$ to form a tetrahedral addition intermediate is the rate-determining step. The large negative ${\Delta}S^\neq$ value determined in the present system is consistent with the proposed mechanism.

Keywords

References

  1. Fischer, E. O.; Massböl, A. Angew. Chem., Int. Ed. Engl. 1964, 3, 580 https://doi.org/10.1002/anie.196405801
  2. Dotz, K. H.; Hofmann, P.; Kreissl, F. R.; Schubert, U.; Weiss, K. Transition Metal Carbene Complexes; Verlag Chemie: Deerfield Beach, FL, 1983
  3. Bernasconi, C. F.; Sun, W. Organometallics 1995, 14, 5615 https://doi.org/10.1021/om00012a030
  4. Bernasconi, C. F.; Flores, F. X.; Sun, W. J. J. Am. Chem. Soc. 1995, 117, 4875 https://doi.org/10.1021/ja00122a019
  5. Aumman, R.; Hinterding, P.; Krüger, C.; Goddard, R. J. Organomet. Chem. 1993, 459, 145 https://doi.org/10.1016/0022-328X(93)86066-Q
  6. Fischer, E. O.; Massbol, A. Chem. Ber. 1967, 100, 2445
  7. Bernasconi, C. F.; Flores, F. X.; Kittredge, K. W. J. Am. Chem. Soc. 1997, 119, 2103 https://doi.org/10.1021/ja963617i
  8. Yukawa, Y.; Tsuno, Y. Bull. Chem. Soc. Japan 1959, 32, 965 https://doi.org/10.1246/bcsj.32.965
  9. Hammett, L. P. Chem. Rev. 1935, 17, 225
  10. Hammett, L. P. J. Chem. Ed. 1966, 43, 464 https://doi.org/10.1021/ed043p464
  11. Um, I.-H.; Han, H.-J.; Ahn, J.-A.; Kang, S.; Buncel, E. J. Org. Chem. 2002, 67, 8475 https://doi.org/10.1021/jo026339g
  12. Um, I.-H.; Hong, J.-Y.; Kim, J.-J.; Chae, O.-M.; Bae, S.-K. J. Org. Chem. 2003, 68, 5180 https://doi.org/10.1021/jo034190i
  13. Um, I.- H.; Lee, J.-Y.; Kim, H.-T.; Bae, S.-K. J. Org. Chem. 2003, 69, 2436 https://doi.org/10.1021/jo035854r
  14. Um, I.-H.; Chun, S.-M.; Chae, O.-M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2003, 68, 5180 https://doi.org/10.1021/jo034190i
  15. Porai-Koshits, B. A.; Belyaev, E. Yu.; Shadovskii, E. Reacts. Sposobnost. Org. Soedin. 1964, 1, 10
  16. Bergon, M.; Calmon, J. P. Tetrahedron Letts 1981, 22, 937 https://doi.org/10.1016/0040-4039(81)89013-2
  17. Bernasconi, C. F.; Whitesell, C. J.; Johnson, R. A. Tetrahedron 2000, 56, 4917 https://doi.org/10.1016/S0040-4020(00)00206-4
  18. Bernasconi, C. F.; Garcia-Rio, L. J. Am. Chem. Soc. 2000, 122, 3821 https://doi.org/10.1021/ja994174w
  19. Hansch, C.; Hoekman, D.; Gao, H. Chem. Rev. 1996, 96, 1045 https://doi.org/10.1021/cr9400976
  20. Bernasconi, C. F.; Stronach, M. W. J. Am. Chem. Soc. 1993, 115, 1341 https://doi.org/10.1021/ja00057a017

Cited by

  1. Fast, efficient Ru(iv)-catalysed regioselective allylation of indoles using allyl alcohol (without additives) under mild conditions pp.44, 2007, https://doi.org/10.1039/b710763c
  2. Kinetic Studies on the Aminolysis of 2-(p-Substitutedbenzoyl)-4,5-dichloropyridazin-3-ones vol.30, pp.11, 2005, https://doi.org/10.5012/bkcs.2009.30.11.2779
  3. Kinetic Studies on the Aminolysis of 2-(p-Substitutedbenzoyl)-4,5-dichloropyridazin-3-ones vol.30, pp.11, 2005, https://doi.org/10.5012/bkcs.2009.30.11.2779
  4. Single Electron Transfer (SET) Pathway: Nucleophilic Substitution Reaction of 4-Chloro-7-nitrobenzofurazan with Anilines in MeOH-MeCN Mixtures vol.31, pp.10, 2005, https://doi.org/10.5012/bkcs.2010.31.10.2801
  5. Transmetalation of Acyclic Tungsten Carbenes to Coinage Metals: Distinct Behavior of Silver toward Carbene Transfer and Hydrolysis vol.40, pp.1, 2021, https://doi.org/10.1021/acs.organomet.0c00675