Abstract
Kinetic studies have been performed for alkaline hydrolysis of a series of [(methoxy)(p-substituted styryl)carbene]pentacarbonyl chromium(0) complexes ($(CO)_5$Cr=$C(OCH_3)CH=CHC_6H_4X$, X = p-$OCH_3$, p-$CH_3$, H, p-Cl, p-$NO_2$). Second-order rate constants $(k_{{OH}^-})$ for the alkaline hydrolysis in 50% acetonitrile-water(v/v) were determined spectrophotometrically at various temperatures. At a low pH region (pH < 7.5), the observed rate constant $(k_{obs})$ remained constant with a small value, while in a high pH region (pH > 9.5), $k_{obs}$ increases linearly with increasing the pH of the medium. The second-order rate constants $(k_{{OH}^-})$ increase as the substituent X changes from a strong electron donating group to a strong electron withdrawing group. The Hammett plot obtained for the alkaline hydrolysis is consisted of two intersecting straight lines. The nonlinear Hammett plot might be interpreted as a change in the rate-determining step. However, the fact that the corresponding Yukawa-Tsuno plot is linear with $\rho$ and r values of 0.71 and 1.14, respectively indicates that the nonlinear Hammett plot is not due to a change in the rate-determing step but is due to ground-state stabilization through resonance interaction. The positive $\rho$ value suggests that nucleophilic attack by $OH^-$ to form a tetrahedral addition intermediate is the rate-determining step. The large negative ${\Delta}S^\neq$ value determined in the present system is consistent with the proposed mechanism.