DOI QR코드

DOI QR Code

Recent Advances in Electrochemical Studies of π-Conjugated Polymers

  • Park, Su-Moon (Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology) ;
  • Lee, Hyo-Joong (Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology)
  • Published : 2005.05.20

Abstract

We review the evolution of electrochemical studies of conducting polymers into the current state-of-the-art based primarily on our work. While conventional electrochemical experiments sufficed for the needs in the phase of studies of both electrochemical synthesis and characterization of conducting polymers, developments of various new experimental techniques have led to their introduction to this field for more refined information. As a result, the conventional electrochemical, spectroelectrochemical, electrochemical quartz crystal microbalance, impedance, and morphological as well as electrical characterization studies all made important contributions to a better understanding of the polymerization mechanisms and the conductive properties of these classes of polymers. From this review, we hereby expect that the electrochemical techniques will continue to play important roles in bringing this field to the practical applications such as nanoscale electronic devices.

Keywords

References

  1. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. J. Chem. Soc., Chem. Commun. 1977, 578
  2. Skotheim, T. A.; Elsenbaumer, R. L.; Reynolds, J. R. Handbook of Conducting Polymers; Marcel Dekker: New York, 1997; Vols. 1-2
  3. Nalwa, H. S. Handbook of Organic Conductive Molecules and Polymers; Wiley: Chichester, U.K., 1997; Vols. 1-4
  4. Park, S.-M. In Handbook of Organic Conductive Molecules and Polymers; Nalwa, H. S., Ed.; Wiley: Chichester, U.K., 1997; Vol. 3
  5. Mizoguchi, T.; Adams, R. N. J. Am. Chem. Soc. 1962, 84, 2058 https://doi.org/10.1021/ja00870a009
  6. Galas, Z.; Adams, R. N. J. Am. Chem. Soc. 1962, 84, 2061 https://doi.org/10.1021/ja00870a010
  7. Mohilmer, D. M.; Adams, R. N.; Argersinger, Jr., W. J. J. Am. Chem. Soc. 1962, 84, 3618 https://doi.org/10.1021/ja00878a003
  8. Nelson, R. F.; Adams, R. N. J. Am. Chem. Soc. 1968, 90, 3925 https://doi.org/10.1021/ja01017a004
  9. Yang, R.; Smyrl, W. H.; Evans, D. F.; Hendrickson, W. A. J. Phys. Chem. 1992, 96, 1428 https://doi.org/10.1021/j100182a073
  10. Jeon, D.; Kim, J.; Gallagher, M. C.; Willis, R. F. Science 1992, 256, 1662 https://doi.org/10.1126/science.256.5064.1662
  11. Ho, P. K.; Zhang, P.- C.; Zhou, L.; Li, S. F. Y.; Chan, H. S. O. Phys. Rev. B 1997, 56, 15919 https://doi.org/10.1103/PhysRevB.56.15919
  12. Bonnell, D. A.; Angelopoulos, M. Synth. Met. 1989, 33, 301 https://doi.org/10.1016/0379-6779(89)90476-1
  13. Kelley, T. W.; Granstrom, E. L.; Frisbie, C. D. Adv. Mater. 1999, 11, 261 https://doi.org/10.1002/(SICI)1521-4095(199903)11:3<261::AID-ADMA261>3.0.CO;2-B
  14. Gardner, C. E.; Macpherson, J. V. Anal. Chem. 2002, 74, 576A
  15. Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J. Phys. Rev. Lett. 1977, 39, 1098 https://doi.org/10.1103/PhysRevLett.39.1098
  16. Chiang, C. K.; Gau, S. C.; Fincher, C. R.; Park, Y. W.; MacDiarmid, A. G. Appl. Phys. Lett. 1978, 33, 18 https://doi.org/10.1063/1.90166
  17. Nigrey, P. J.; MacDiarmid, A. G.; Heeger, A. J. J. Chem. Soc., Chem. Commun. 1979, 594
  18. Jones, C.; Jordan, P. M.; Chaudhry, A. J.; Akhtar, M. J. Chem. Soc., Chem. Commun. 1979, 96
  19. Scrosati, B. Applications of Electroactive Polymers; Chapman and Hall: London, 1997
  20. Paul, E. W.; Ricco, A. J.; Wrighton, M. S. J. Phys. Chem. 1985, 89, 1441 https://doi.org/10.1021/j100254a028
  21. Gholamian, M.; Kumar, T. N. S.; Contractor, A. Q. Proc. Indian Acad. Sci. 1986, 97, 457
  22. Stilwell, D. E.; Park, S.-M. J. Electrochem. Soc. 1988, 135, 2254 https://doi.org/10.1149/1.2096248
  23. Shim, Y.-B.; Park, S.-M. Synth. Met. 1989, 29, E169
  24. Choi, S.-J.; Park, S.-M. J. Electrochem. Soc. 2002, 149, E26 https://doi.org/10.1149/1.1432675
  25. Lee, J.-Y.; Park, S.-M. J. Electrochem. Soc. 2000, 147, 4189 https://doi.org/10.1149/1.1394039
  26. Hoier, S. N.; Park, S.-M. J. Electrochem. Soc. 1993, 140, 2454 https://doi.org/10.1149/1.2220844
  27. Kim, B.-S.; Kim, W. H.; Hoier, S. N.; Park, S.-M. Synth. Met. 1995, 69, 455 https://doi.org/10.1016/0379-6779(94)02527-6
  28. Johnson, B. J.; Park, S.-M. J. Electrochem. Soc. 1996, 143, 1277 https://doi.org/10.1149/1.1836629
  29. Stilwell, D. E.; Park, S.-M., J. Electrochem. Soc., 1988, 135, 2497 https://doi.org/10.1149/1.2095365
  30. Stilwell, D. E.; Park, S.-M. J. Electrochem. Soc. 1989, 136, 688 https://doi.org/10.1149/1.2096711
  31. Hoier, S. N.; Ginley, D. S.; Park, S.-M., J. Electrochem. Soc. 1988, 135, 91 https://doi.org/10.1149/1.2095597
  32. Stilwell, D. E.; Park, S.-M., J. Electrochem. Soc. 1988, 135, 2491 https://doi.org/10.1149/1.2095364
  33. Park, D.-S.; Shim, Y.-B.; Park, S.-M. J. Electrochem. Soc. 1993, 140, 2749 https://doi.org/10.1149/1.2220904
  34. Mu, S.; Park, S.-M. Synthetic Metals 1995, 69, 311 https://doi.org/10.1016/0379-6779(94)02464-A
  35. Jin, C.-S.; Shim, Y.-B.; Park, S.-M. Synth. Met. 1995, 69, 561 https://doi.org/10.1016/0379-6779(94)02569-K
  36. Park, D.-S.; Shim, Y.-B.; Park, S.-M. Electroanalysis 1996, 8, 44 https://doi.org/10.1002/elan.1140080110
  37. Kim, B.-S.; Piao, T.; Hoier, S. N.; Park, S.-M. Corrosion Science 1995, 37, 557 https://doi.org/10.1016/0010-938X(94)00147-X
  38. Cai, M.; Park, S.-M. J. Electrochem. Soc. 1996, 143, 2125 https://doi.org/10.1149/1.1836970
  39. Cai, M.; Park, S.-M. J. Electrochem. Soc. 1996, 143, 3895 https://doi.org/10.1149/1.1837313
  40. Piao, T.; Park, S.-M. J. Electrochem. Soc. 1997, 144, 3371 https://doi.org/10.1149/1.1838021
  41. Sherif, E. M.; Park, S.-M. J. Electrochem. Soc. 2005, 152, B205 https://doi.org/10.1149/1.1914752
  42. Genies, E. M.; Lapkowski, M. J. Electroanal. Chem. 1987, 220, 67 https://doi.org/10.1016/0022-0728(87)88005-1
  43. McManus, P. M.; Cushman, R. J.; Yang, S. C. J. Phys. Chem. 1987, 91, 1575
  44. Pyun, C.-H.; Park, S.-M. Anal. Chem. 1986, 58, 251 https://doi.org/10.1021/ac00292a063
  45. Zhang, C.; Park, S.-M. Anal. Chem. 1988, 60, 1639 https://doi.org/10.1021/ac00166a037
  46. Zhang, C.; Park, S.-M. Bull. Korean Chem. Soc. 1989, 10, 302
  47. Hong, S.-Y.; Jung, Y. M.; Kim, S. B.; Park, S.-M. J. Phys. Chem. B 2005, 109, 3844 https://doi.org/10.1021/jp046218f
  48. Shim, Y.-B.; Won, M.-S.; Park, S.-M. J. Electrochem. Soc. 1990, 137, 538
  49. Stilwell, D. E.; Park, S.-M. J. Electrochem. Soc. 1989, 136, 427
  50. Hoier, S. N.; Park, S.-M. J. Phys. Chem. 1992, 96, 5688
  51. Shim, Y.-B.; Park, S.-M. J. Electrochem. Soc. 1997, 144, 3027
  52. Lee, H. J.; Cui, S.-Y.; Park, S.-M. J. Electrochem. Soc. 2001, 148, D139
  53. Sharma, H. S.; Park, S.-M. J. Electrochem. Soc. 2004, 151, E61
  54. Han, D.-H.; Park, S.-M. J. Phys. Chem. B 2004, 108, 13921
  55. Orata, D.; Buttry, D. A. J. Am. Chem. Soc. 1987, 109, 3574 https://doi.org/10.1021/ja00246a013
  56. Cui, S.-y.; Park, S.-M. Synth. Met. 1999, 105, 91
  57. Lee, H. J.; Cui, S.-y.; Park, S.-M. J. Electrochem. Soc. 2001, 148, D139
  58. Ding, H.; Park, S.-M. J. Electrochem. Soc. 2001, 148, E33
  59. Chung, T. D. Bull. Korean Chem. Soc. 2003, 24, 291 https://doi.org/10.5012/bkcs.2003.24.3.291
  60. Sharma, H. S.; Park, S.-M. J. Electrochem. Soc. 2004, 151, E61
  61. Shim, H.-S.; Yeo, I.-H.; Park, S.-M. Anal. Chem. 2002, 74, 3540
  62. Park, S.-M.; Yoo, J.-S. Anal. Chem. 2003, 75, 455A
  63. Xuan, G. S.; Jung, S.-H.; Kim, S.-H. Bull. Korean Chem. Soc. 2004, 25, 165
  64. Greszczuk, M.; Zabinska-Olszak, G. J. Electroanal. Chem. 1993, 359, 161
  65. Kanamura, K.; Kawai, Y.; Yonezawa, S.; Takehara, Z.-i. J. Phys. Chem. 1994, 98, 2174 https://doi.org/10.1021/j100062a033
  66. Deslouis, C.; Musiani, M. M.; Triollet, B. J. Phys. Chem. 1994, 98, 2936 https://doi.org/10.1021/j100062a033
  67. Johnson, B. J.; Park, S.-M. J. Electrochem. Soc. 1996, 143, 1269
  68. Popkirov, G. S.; Schindler, R. N. Rev. Sci. Instrum. 1992, 63, 5366 https://doi.org/10.1063/1.1143404
  69. Ragoisha, G. A.; Bondarenko, A. S. Electrochem. Comm. 2003, 5, 392 https://doi.org/10.1016/S1388-2481(03)00075-4
  70. Darowicki, K.; Kawula, J. Electrochim. Acta 2004, 49, 4829 https://doi.org/10.1016/j.electacta.2004.05.035
  71. Yoo, J.-S.; Park, S.-M. Anal. Chem. 2000, 72, 2035
  72. Yoo, J.-S.; Song, I.; Lee, J.-H.; Park, S.-M. Anal. Chem. 2003, 75, 3294
  73. Zotti, G.; Cattrain, S.; Commisso, N. J. Electroanal. Chem. 1988, 235, 259 https://doi.org/10.1016/0022-0728(87)85223-3
  74. Zotti, G.; Cattrain, S.; Commisso, N. J. Electroanal. Chem. 1988, 239, 387 https://doi.org/10.1016/0022-0728(88)80293-6
  75. Ko, J. M.; Rhee, H. W.; Park, S.-M.; Kim, C. Y. J. Electrochem. Soc. 1990, 137, 905
  76. Park, S.-M.; Lee, H. J. In Handbook of Electrochemical Nanotechnology; Nalwa, H. S., Ed.; in preparation
  77. Gadenne, M.; Schneegans, O.; Houze, F.; Chretien, P.; Desmarest, C.; Sztern, J.; Gadenne, P. Physica B 2000, 279, 94 https://doi.org/10.1016/S0921-4526(99)00678-X
  78. Girard, P. Nanotechnology 2001, 12, 485 https://doi.org/10.1088/0957-4484/12/4/321
  79. Hersam, M.; Hoole, A.; O'Shea, S.; Welland, M. Appl. Phys. Lett. 1998, 72, 915 https://doi.org/10.1063/1.120872
  80. www.molec.com (applications/imaging modes)
  81. Beebe, J. M.; Engelkes, V. B.; Miller, L. L.; Frisbie, C. D. J. Am. Chem. Soc. 2002, 124, 11268 https://doi.org/10.1021/ja0276671
  82. Nakamura, T.; Yasuda, S.; Miyamae, T.; Nozoye, H.; Kobayashi, N.; Kondoh, H.; Nakai, I.; Ohta, T.; Yoshimura, D.; Matsumoto, M. J. Am. Chem. Soc. 2002, 124, 12642
  83. Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore, A. L.; Moore, T. A.; Gust, D.; G., H.; Lindsay, S. M. Science 2001, 294, 571 https://doi.org/10.1126/science.1064354
  84. Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore, A. L.; Moore, T. A.; Gust, D.; Nagahara, L. A.; Lindsay, S. M. J. Phys. Chem. B 2002, 106, 8609 https://doi.org/10.1021/jp0206065
  85. Dai, H.; Wong, E. W.; Lieber, C. M. Science 1996, 272, 523 https://doi.org/10.1126/science.272.5261.523
  86. de Pablo, P. J.; Gomez-Navarro, C.; Martinez, M. T.; Benito, A. M.; Maser, W. K.; Colchero, J.; Gomez-Herrero, J.; Baro, A. M. Appl. Phys. Lett. 2002, 80, 1462
  87. Alperson, B.; Rubinstein, I.; Hodes, G. Phys. Rev. B 2001, 63, 081303
  88. Park, W. I.; Yi, G.-C.; Kim, J.-W.; Park, S.-M. Appl. Phys. Lett. 2003, 82, 4358
  89. Lee, H. J.; Park, S.-M. J. Phys. Chem. B 2004, 108, 1590 https://doi.org/10.1021/jp0494279
  90. Han, D.-H.; Park, S.-M. J. Phys. Chem. B 2004, 108, 13921 https://doi.org/10.1021/jp0472764
  91. Lee, H. J.; Park, S.-M. J. Phys. Chem. B 2004, 108, 16365
  92. Han, D.-H.; Lee, H. J.; Park, S.-M. Electrochim. Acta 2005, 50, 3085
  93. Hong, S.-Y.; Park, S.-M. J. Phys. Chem. B 2005, 109, 9305
  94. Isrraelachvili, J. Intermolecular and Surface Forces; Academic Press: London, 1992
  95. Riedo, E.; Brune, H. Appl. Phys. Lett. 2003, 83, 1986 https://doi.org/10.1063/1.1609234
  96. Martin, C. R. Acc. Chem. Res. 1995, 28, 61 https://doi.org/10.1021/ar00050a002
  97. Menon, V. P.; Lei, J.; Martin, C. R. Chem. Mater. 1996, 8, 2382 https://doi.org/10.1021/cm960203f
  98. Wu, C. G.; Bein, T. Science 1994, 264, 1757 https://doi.org/10.1126/science.264.5166.1757
  99. Bein, T.; Enzel, P. Angew. Chem. Int. Engl. Ed. 1989, 28, 1692 https://doi.org/10.1002/anie.198916921
  100. Choi, S.-J.; Park, S.-M. Adv. Mater. 2000, 12, 1547
  101. Park, S.-M.; Lee, J.-Y.; Choi, S.-J. Synth. Met. 2001, 121, 1297
  102. Huang, J.; Kaner, R. B. Angew. Chem. Int. Engl. Ed. 2004, 43, 5817 https://doi.org/10.1002/anie.200460616

Cited by

  1. pH-Dependent Mass and Volume Changes of Polypyrrole/Poly(styrene sulfonate) vol.27, pp.12, 2005, https://doi.org/10.5012/bkcs.2006.27.12.2067
  2. Electrocatalytic Reduction of Molecular Oxygen at Poly(1,8-diaminonaphthalene) and Poly(Co(II)-(1,8-diaminonaphthalene)) Coated Electrodes vol.27, pp.11, 2005, https://doi.org/10.5012/bkcs.2006.27.11.1763
  3. Cyclopolymerization of 1,1-Dipropargyl-1-silacyclohexane by Transition Metal Catalysts vol.28, pp.8, 2005, https://doi.org/10.5012/bkcs.2007.28.8.1305
  4. Electrochemistry of Conductive Polymers 46. Polymer Films as Overcharge Inhibitors for Lithium-Ion Rechargeable Batteries vol.1, pp.1, 2005, https://doi.org/10.5229/jecst.2010.1.1.001
  5. Conductive polymers/zeolite (nano-)composites: under-exploited materials vol.4, pp.64, 2005, https://doi.org/10.1039/c4ra03067b