지오텍스타일을 포함하지 않은 토목섬유 경계면의 동적 마찰 특성

Dynamic Frictional Properties of Geosynthetic Interfaces Involving Only Non-geotextiles

  • Kim Jin-Man (Dept. of Civil Engrg., Pusan National Univ.,)
  • 발행 : 2005.09.01

초록

지오텍스타일을 포함하지 않은 토목섬유 경계면의 동적마찰저항과 전단변위속도, 그리고 여타 마찰특성의 상관성에 대한 실험적 연구를 수행하였다 변위속도 조절이 가능한, 진동대를 이용한 진동식 실험장치를 제작하여 사용하였다. 다양한 변위속도를 포함한 실험을 수행한 결과, 지오텍스타일을 포함하지 않은 토목섬유 경계면은 지오텍스타일을 포함한 토목섬유 경계면의 전단특성과 확연히 구별되는 거동을 보였다. 지오텍스타일을 포함한 토목섬유 경계면과 달리 지오텍스타일을 포함하지 않은 토목섬유 경계면의 전단 거동은 전단 변위 속도에 민감하지 않으며 강-완전소성에 근사하다는 결론을 얻었다.

Relationship between dynamic friction resistances and shear displacement rate, and other frictional characteristics of non-geotextile-involving geosynthetic interfaces was experimentally studied. A cyclic, displacement rate-controlled experimental setup built on a shaking table was used. The subsequent multiple rate tests showed that interfaces that do not involve geotextiles have distinct shearing characteristics that can be differentiated from the interfaces involving geotextiles. Unlike those of the geotextile-involving interfaces, shear behaviors of the interfaces involving only non-geotextiles tend to be not sensitive to shear displacement rate, and are approximately rigid-perfectly plastic.

키워드

참고문헌

  1. ASTM D5321 (1998), 'Standard test method for determining the coefficient of soil and geosynthetic or geosynthetic and geosynthetic friction by the direct shear method', ASTM Standard Designation D 5321-92, 1992 Annual Books of ASTM Standards, Sec. 4, Vol. 4.08, ASTM, Philadelphia, Pennsylvania
  2. De, Anirban, (1996), 'Study of interfacial friction of landfill geosynthetics: static and dynamic', Ph.D. Thesis, Department of Civil Engineering, Rensselaer Polytechnic Institute, Troy, New York
  3. Kim, J. (2003), 'The effects of displacement rate on shear characteristics of geotextile-involved geosynthetic interfaces', Journal of Korean Geotechnical Society, Vol.19, No.1, pp.173-180
  4. Kim, J., Riemer, M., and Bray, J. D. (2005), 'Dynamic properties of geosynthetic interfaces', Geotechnical Testing Journal, ASTM, Vol.28, No.3
  5. Koutsourais, M. M., Sprague, C. J., and Pucetas, R. C. (1991), 'Interfacial friction study of cap and liner components for landfill design', Geotextiles and Geomembranes, Vol.10, No.6, pp.1499-166
  6. Martin, J. P., Koerner, R. M., and Whitty, J. E. (1984), 'Experimental friction evaluation of slippage between geomembranes, geotextiles, and soils,' Proc. Int. Conf. On Geomembranes, Industrial Fabrics Association International, Denver, Colo., pp.191-196
  7. Mitchell, J. K., Seed, R. B., and Seed, H. B. (1990), 'Kettleman hills waste landfill slope failure. I: Liner-system properties', Journal of Geotechnical Engineering, ASCE, 116, 4, pp.647-668 https://doi.org/10.1061/(ASCE)0733-9410(1990)116:4(647)
  8. Seo, M., Park, J., and Kim, O. (2002), 'The evaluation of interface shear strength between geomembrane and geotextile', Journal of Korean Geotechnical Society, Vol.18, No.1, pp.79-89
  9. Stark, T.D. and Poeppel, A.R. (1994), 'Landfill liner interface strengths from torsional-ring-shear tests', Journal of Geotechnical Engineering, ASCE, Vol.120, No.3, pp.597-615 https://doi.org/10.1061/(ASCE)0733-9410(1994)120:3(597)
  10. Yegian, M. K. and Kadakal, U. (1998), 'Geosynthetic interface behavior under dynamic loading', Geosynthetics International, Vol.5, Nos. 1-2, pp.1-16 https://doi.org/10.1680/gein.5.0111
  11. Yegian, M. K. and Lahlaf, A. M. (1992), 'Dynamic interface shear strength properties of geomembranes and geotextiles', Journal of Geotechnical Engineering, ASCE, 118,5, pp.760-778 https://doi.org/10.1061/(ASCE)0733-9410(1992)118:5(760)