Prediction of Layer Rutting on Pavement Foundations Based on Stress Dependency

응력의존성을 고려한 도로기초의 층변형 예측

  • Published : 2005.09.01

Abstract

There are several major practical consequences of stress-dependent properties of unbound pavement foundations. Among those are the stress-dependent modulus and Poisson's ratio's that may change, the compressive stresses that are generated in materials under load, the stiffening and strengthening effect of repeated loading to progressively increase the unbound pavement materials resistance to permanent deformation. In order to study these, the algorithm for predicting deformations on conventional flexible pavements are proposed and the stress-dependent effects on layer deformation are presented in this paper by the developed stress-dependent finite element analysis program with the selected models.

도로기초에서 입상재료의 응력의존 특성을 반영하면 응력의존 탄성계수와 응력 의존 포와송 비 모두를 동시에 고려할 수 있다. 이 방식은 기존 연속체 역학에 기초한 해석 방식과는 달리 층모형 내에서 인장력의 발생 대신 압축력의 구현이 가능하여 재료의 강성과 연성에 대한 거동을 동시에 반영하여 입상재료층의 변형 예측에 많은 영향을 주고 있다 따라서 본 논문에서는 도로기초를 대상으로 제안된 응력의존 및 변형 모형을 대상으로 유한요소법에 의한 도로기초 층변형 예측 알고리즘을 제안하였고 층변형 예측시 응력의존의 고려에 따른 영향을 분석하였다.

Keywords

References

  1. Allen, J. (1973), The Effects of Non-Constant Lateral Pressures on the Resilient Response of Granular Materials, Ph.D. Dissertation, University of lilinois, Urbana-Champaign, Ill
  2. Lytton, R.L., Uzan, J., Fernando, E., Roque, R., Hiltunen, D., and Stoffels, S. (1993), Development and Validation of Performance Prediction Models and Specifications for Asphalt Binders and Paving Mixes, Strategic Highway Research Program Report A-357, National Research Council, Washington, D.C., 1993
  3. Hicks, R. G. and Monismith, C. (1971), 'Factors Influencing the Resilient Properties of Granular Material', Transportation Research Record, No. 345, Transportation Research Board, National Research Council, Washington, DC, pp.15-31
  4. Kenis, W.J. (1978), Predictive Design Procedure VESYS User's Manual: An Interim Design Method for Flexible Pavement Using the VESYS Structural Subsystem, Final Report No. FHWA-RD-77-54, Federal Highway Administration, Department of Transportation, Washington, D.C
  5. Kenis, W. and Wang, W. (1997), 'Calibrating Mechanistic Flexible Pavement Rutting Models from Full Scale Accelerated Tests', Proceedings of the Eighth International Conference on Asphalt Pavements, Seattle, Washington, pp.663-672
  6. Lade, P. V. and Nelson, R. D. (1987), 'Modeling the Elastic Behavior of Granular Materials', International Journal for Numerical and Analytical Methods in Geomechanics, Chichester, NY, 11(5), pp.521- 542 https://doi.org/10.1002/nag.1610110507
  7. Liu, M. (1993), Numerical Prediction of Pavement Distress with Geotechnical Constitutive Laws, Ph.D. Dissertation, Texas A&M University, College Station, TX
  8. Park, S. and Lytton R. (2004), 'Effect of Stress-Dependent Modulus and Poisson's Ratio on Structural Responses in Thin Asphalt Pavements', Journal of Transportation Engineering, ASCE, Vol.130, No.3, pp.387-394 https://doi.org/10.1061/(ASCE)0733-947X(2004)130:3(387)
  9. Uzan, J., Scullion, T., Michalek, C., Paredes, M., and Lytton, R. (1988), A Microcomputer Based Procedure for Backcalulating Layer Moduli from FWD Data, Research Report 1123-1, Texas Transportation Institute, College Station, TX
  10. Uzan, J. (1992), 'Resilient Characterization of Pavement Materials', International Journal for Numerical and Analytical Methods in Geomechanics, Chichester, NY, 16(6), pp.435-459