다짐 화강풍화토의 비등방성 거동특성

Anisotropic Behavior of Compacted Decomposed Granite Soils

  • Ham Tae-Gew (Dept. of Civil Engrg., Yamaguchi Univ.) ;
  • Hyodo Masayuki (Dept. of Civil Engrg., Yamaguchi Univ.) ;
  • Ahn Tae-Bong (Dept. of Railroad Construction and Environmental Engrg., Woosong Univ.,)
  • 발행 : 2005.09.01

초록

화강풍화토의 강도와 변형특성을 조사하기 위하여 불포화배수 삼축압축실험을 실시하였다. 본 실험을 위하여 야마구치현의 시모노세키에서 화강풍화토를 구하였으며 주응력방향과 다짐방향을 0,45, 90도의 세가지 방향성을 갖도록 하였다. 등방압축시 발생하는 압축변형률은 다짐각도에 따라 크게 영항을 받는다. 이차압축시의 변형거동에 관한 시간의존성은 다짐각도와 관계가 없다. 다짐각도가 압축강도와 변형에 미치는 영향은 특히 낮은 구속압력시에 크다. 다짐각도가 다르다 하더라도 다일러틴시 비율은 다일러턴시로 인한 강도증가와 상관하여 변화한다. 따라서 다짐풍화토는 초기 비등방성 조직을 갖고 있는 모래와 같이 비등방성 역학적 성질을 갖는다고 할 수 있다.

In order to investigate the strength and deformation anisotropy of compacted decomposed granite soils, a series of unsaturated-drained triaxial compression tests were performed. The sample used in the study was decomposed granite soil from Shimonoseki in Yamaguchi prefecture. The sample had three different angles of the axial (major principal) direction to the sedimentation plane (compaction plane), 0, 45 and 90 degrees. The compression strain of specimens subjected to isotropic compression was strongly influenced by the sedimentation angle. In addition, the time dependence was independent of the sedimentation angle in relation to the deformation behavior during the secondary compression process. The effect of the sedimentation angle on the triaxial compression strength and deformation was clear with low confining stress. Moreover, it was recognized that although the sedimentation angle and preparation methods were different, the dilatancy rate was relative to the increment of strength due to dilatancy. Therefore, it may be concluded that the compacted specimen has anisotropic mechanical properties similar to those of sand with initial fabric anisotropy.

키워드

참고문헌

  1. Hardin, B.O. and Richart, F. (1963), 'Elastic wave velocities in granular soils', Journal of SMF Div., ASCE, Vol.89, No.SM1, pp.33-65
  2. Hardin, B.O. and Black, W. L. (1969), 'Vibration modulus of normally consolidated clay', Journal of the SMF Div., Proc. ASCE, Vol.95, No.SM6: 1531-1537
  3. Kohata. et al. 1995, 'Inherent and induced anisotropy of sedimentary softrock', Proc. of 10ARC: 33-36
  4. Livneh, M. and Komornik, A. (1967), 'Anisotropic strength of compacted clay', Proc., 3rd ASIAN Reg. Conf. On SMFE, Vol.1: 298-304
  5. Lambe, T. W. (1958), 'The structure of compacted clay', Proc., ASCE, Vol. 84, SM2: 1655-1-1655-35
  6. Nakata, Y., Hyodo, M., and Murata, H. (1998), 'Single particle crushing and mechanical behavior of decomposed granite soil', Proceedings of the international symposium on problematic soils, IS-TOHOKU'98. SENDAl, JAPAN: 483-497
  7. Oda, M., Koishikawa, I., and Higuchi, T. (1978), 'Experimental study of anisotropic shear strength of sand by plane strain test', Soils and Foundation, Vol.18, No.1: 25-38
  8. Onitsuka, K. and Hayashi, S. (1979), 'Studies on compression and strength Anisotropy of compacted soils', in Japanese. JSCE. Vol.19, No.3, Sept: 113-123
  9. Seed, H. B., Mitchell, J.K., and Chan, C.K. (1960), 'The strength of compacted cohesive soils', ASCE., Research Conf. On the Shear Strength of Cohesive Soil, Boulder, Colorado: pp.169-273
  10. Shibuya, S., Mitachi, T., Fukuda, F., and Degoshi, T. (1995), 'Strain rate effects on shear modulus and damping of normally consolidated clay', Geotechnical Testing Journal, Vol.18, No.3: pp.365-375 https://doi.org/10.1520/GTJ11005J
  11. Tatsuoka, F., Nakamura, S., Huang, C., and Tani, K. (1990), 'Strength anisotropy and shear band direction', Soils and Foundation, Vol.30, No.1: pp.35-54
  12. Tatsuoka, F. and Shibuya, S. (1992), 'Deformation characteristics of soils and rocks from field and laboratory tests', Keynote Lecture, Proc. of 9th Asian Regional Conf. on SMFE, Vol. 2: 101-170