DOI QR코드

DOI QR Code

Characteristics of Capacitive Deionization Process using Carbon Aerogel Composite Electrodes

탄소에어로젤 복합전극의 전기용량적 탈이온 공정 특성

  • Lee, Gi-Taek (Eco-nano Research Center, Korea Institute of Science and Technology) ;
  • Cho, Won-Il (Eco-nano Research Center, Korea Institute of Science and Technology) ;
  • Cho, Byung-Won (Eco-nano Research Center, Korea Institute of Science and Technology)
  • 이기택 (한국과학기술연구원 나노환경연구센터) ;
  • 조원일 (한국과학기술연구원 나노환경연구센터) ;
  • 조병원 (한국과학기술연구원 나노환경연구센터)
  • Published : 2005.05.01

Abstract

Porous-composite electrodes have been developed using silica gel, which reduce carbon aerogel usage with high cost. Silica gel powder was added to the carbon aerogel to simplify the manufacturing procedure and to increase the wet-ability, the mechanical strength and the CDI efficiency. Porous composite electrodes composed of carbon aerogel and silica gel powder were prepared by paste rolling method. Carbon aerosol composite electrodes with $10\times10cm^2$ are placed face to face between spacers, and assembled the four-stage series cells for CDI process. Each stage is composed of 45 cells. Four-stage series cells (flow through cells) for CDI process are put in continuous-system reactor containing 1,000ml-NaCl solution bath of 1,000 ppm. The four-stage series cells with carbon aerogel electrodes are charged at 1.2V and are discharged at 0.001V, and then read the current. Conclusively, removal efficiencies of ions using the four-stage series cells composed of carbon aerogel composite electrodes show good removal efficiency of $99\%$ respectively.

전기화학적으로 이온을 흡착시켜 이온을 제거하는 capacitive deionization(CDI)공정용 전극으로 탄소에어로젤에 실리카젤이 첨가된 다공성 탄소에어로젤 복합전극을 사용하여 1,000ppm NaCl수용액에서 탈염 특성에 대한 충전과 방전시 시간에 따른 전류 변화, CDI효율을 조사하였다. Paste rolling법으로 제조된 $10\times10cm^2$다공성 탄소에어로젤 복합전극은 촉매 분야에서 활용되고 있는 다공성 지지체인 실리카젤을 첨가함으로써 CDI 반응진행에 대한 전극활물질 탈락이 없이 전극의 성형성이 크게 향상되었고, 친수성과 전극의 기계적 강도 증가 및 CDI 효율을 증가시킬 수 있었다. 이러한 45개의 전극을 하나의 묶음으로 네 개의 단을 직렬연결 하여, CDI 시스템을 구성하였고 충전 시에는 1.2V, 방전 시에는 0.001V를 각각 10분간 인가하여 실험한 결과 $99\%$ 이상의 CDI 효율을 달성하였다.

Keywords

References

  1. Spiegler KS and El-Sayed YM, 'The energetics of desalination processes', Desalination, 134, 109 (2001) https://doi.org/10.1016/S0011-9164(01)00121-7
  2. Perez RV, Rodriguez ML and Mengual JAI, 'Characterizing an electrodialysis reversal pilot plant' Desalination, 137, 199 (2001) https://doi.org/10.1016/S0011-9164(01)00219-3
  3. J. A. Trainham and J. Newman, J. Electrochem. Soc., 124, 1528 (1977) https://doi.org/10.1149/1.2133106
  4. W. J. Blaedel and J. C. Wang, 'Flow electrolysis on a reticulated vitreous carbon electrode' Anal. Chem. 51, 799 (1979) https://doi.org/10.1021/ac50043a006
  5. M. Matlosz and J. Newman, 'Experimental investigation of a porous carbon electrode for the removal of mercury from contaminated brine' J. Electrochem. Soc., 133, 1850 (1986) https://doi.org/10.1149/1.2109035
  6. Joseph C. Farmer and David V. Fix, 'Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes' J. Electrochem. Soc., 143, 159 (1996) https://doi.org/10.1149/1.1836402
  7. Andrew Porteous, Desalination Technology, Applied Science Publishers, London (1983)
  8. K. S. Spiegler and Y. M. El-Sayed, 'The energetics of desalination processes', Desalination, 134, 109 (2001) https://doi.org/10.1016/S0011-9164(01)00121-7
  9. R. V. Perez, M. L. Rodriguez and J. Mengual, 'Characterizing an electrodialysis reversal pilot plant', Desalination, 137, 199 (2001) https://doi.org/10.1016/S0011-9164(01)00219-3
  10. R. W. Pekala, J. C. Farmer, C. T. Alviso, T. D. Tran, S. T. Mayer, J. M. Miller and B. Dunn, 'Carbon aerogels for electrochemical applications', J Non-Cryst. Solids, 225, 74 (1998) https://doi.org/10.1016/S0022-3093(98)00011-8
  11. J. Fricke and T. Tillotson, 'Aerogels: production, characterization, and applications', Thin Solid Films, 297, 212 (1997) https://doi.org/10.1016/S0040-6090(96)09441-2
  12. J. C. Farmer, D. V. Fix, G V. Mack, R. W. Pekala, and J. F. Poco, J. Appl. Electrochem., 26, 1007 (1996)
  13. J. C. Farmer, S. M. Bahowick, J. E. Harrar, D. V. Fix, R. E. Martinelli, A. K. Vu and K. L. Carroll, 'Electrosorption of chromium ions on carbon aerogel electrodes as a means of remediating ground water', Energy & Fuels, 11, 337 (1997) https://doi.org/10.1021/ef9601374
  14. Lawrence W. Hrubesh, 'Aerogel applications', J. Non-Cryst. Solids, 225, 335 (1998) https://doi.org/10.1016/S0022-3093(98)00135-5
  15. Andelman, M. D., 'Flow-Though Capacitor', U.S. Patent No. 5,415,768 (1995)
  16. Farmer, J., 'Method and Apparatus for Capacitive Deionization, Electrochemical Purification, and Regeration of Electrodes', U.S. Patent No. 5,425,858 (1995)
  17. C. M. Yang, W. H. Choi, B. W. Cho, H. S. Han, K. S. Yun and W. I. Cho, 'Porous carbon Aerogel-silica gel composite electrodes for capacitive deionization process', J. of the Korean Electrochemical Society, 7, 38 (2004) https://doi.org/10.5229/JKES.2004.7.1.038

Cited by

  1. Comparison of CDI and MCDI applied with sulfonated and aminated polysulfone polymers vol.7, pp.1, 2016, https://doi.org/10.12989/mwt.2016.7.1.039