복합재 형상의 FEA기반 설계를 위한 통합 CAD 시스템

An Integrated CAD System for FEA-based Design of Heterogeneous Objects

  • 신기훈 (서울산업대학교 기계공학과) ;
  • 김주한 (서울산업대학교 기계공학과)
  • 발행 : 2005.09.01

초록

CAD systems are routinely used by designers for creating part geometries. Interfaces to CAE/CAM systems are also commonplace enabling the FEA-based design optimization and the rapid fabrication of the designed part. However, conventional CAD systems have thus far focused on objects with homogeneous interior. Two recent advances--use of heterogeneous objects such as Functionally Graded Materials (FGM) in parts and Layered Manufacturing Technology (LMT)--have brought to the forefront the need for CAD systems to support the creation of geometry as well as the graded material inside. We first describe the need and the components of such a CAD system for heterogeneous objects. A prototype CAD system is then described with one specific example (thermal barrier type FGM, pressure vessel) in order to illustrate the use of the implemented CAD system. The implemented system is manually integrated with FEA tools for optimal design. Our ongoing work involves the automation of the integration with FEA tools.

키워드

참고문헌

  1. Bendsoe, M. and Kikuchi, N., 'Generating Optimal Topologies in Structural Design using a Homogenization Method', Computer Methods in Applied Mechanics and Engineering, Vol. 71, pp. 197-224, 1998
  2. Bendsoe, M., Diaz, A. and Kikuchi, N., 'Topology and Generalized Layout Optimization of Elastic Structures', Topology Design of Structures, Kluwer Academic Publishers, pp. 159-206, 1993
  3. Cherkaev, A., 'Relaxation of Problems of Optimal Structural Design', International Journal of Solids and Structures, Vol. 31, No. 16, pp. 2251-2280, 1994 https://doi.org/10.1016/0020-7683(94)90209-7
  4. Cherakaev, A. and Kohn, R., Topics in the Mathematical Modeling of Composite Materials, Birkhauser, Boston, MA, 1997
  5. Markworth, A. J. and Saunders, J. H., 'A Model of Structure Optimization for a Functionally Graded Material', Materials Letters, Vol. 2, pp. 103-107, 1995
  6. Tanaka, K., Watanabe, H., Sugano, Y. and Poterasu, V. F., 'A Multicriterial Material Tailoring of a Hollow Cylinder in Functionally Gradient Materials: Scheme to Global Reduction of Thermoelastic Stresses', Computer Methods in Applied Mechanics and Engineering, Vol. 135, pp. 369-380, 1996 https://doi.org/10.1016/0045-7825(96)01014-6
  7. Kwon, P. Y., 'Macroscopic Design and Fabrication of Functionally Gradient Materials', Ph.D. Thesis, Department of Mechanical Engineering, University of California, Berkeley, 1994
  8. Suh, Nam P., 'Applications of Axiomatic Design, Integration of Process Knowledge into Design Support Systems', 1999
  9. Mazumder, J., Choi, J., Nagarathnam, K., Koch, J. and Hetzner, D., 'The Direct Metal Deposition of H13 Tool Steel for 3-D Components', JOM, Vol. 49, No. 5, pp. 55-60, 1997
  10. Fessler, J., Nickel, A., Link, G., Prinz, F. and Fussell, P., 'Functional Gradient Metallic Prototypes through Shape Deposition Manufacturing', Solid Freeform Fabrication Proceedings, Austin, TX, pp. 521-528, 1997
  11. Marsan, A. and Dutta, D, 'Construction of a Surface Model and Layered Data from 3D Homogenization Output', Journal of Mechanical Design, Vol. 118, No. 3, pp. 412-18, 1996 https://doi.org/10.1115/1.2826901
  12. Marsan, A. and Dutta, D., 'Computational Techniques for Automatically Tiling and Skinning Branched Objects', Computer & Graphics, Vol. 23, No. 1, 1999
  13. Hoffmann, C. M. and Rossignac, J. R., 'A Road Map to Solid Modeling', IEEE Transactions on Visualization and Computer Graphics, Vol. 2, 1996
  14. Kumar, V. and Dutta, D., 'An Approach to Modeling and Representation of Heterogeneous Objects', ASME Journal of Mechanical Design, Vol. 120, No. 4, pp. 659-667, 1998 https://doi.org/10.1115/1.2829329
  15. Jackson, T. R., Liu, H., Patrikalakis, N. M., Sachs, E. M. and Cima, M. J., 'Modeling and Designing Functionally Graded Material Components for Fabrication with Local Composition Control', Material & Design, Vol. 20, No. 2/3, pp. 63-75, 1999 https://doi.org/10.1016/S0261-3069(99)00011-4
  16. Wu, Z., Seah, H. S. and Lin, F., 'NURBS-Based Volume Modeling', International Workshop on Volume Graphics, Swansea, pp. 321-330, 1999
  17. Shin, K. H. and Dutta, D., 'Constructive Representation of Heterogeneous Objects', ASME Journal of Computing and Information Science in Engineering (JCISE), Vol. 1, No.3, pp. 205-217, 2001 https://doi.org/10.1115/1.1403448
  18. Park, S. M., Crawford, R. H. and Beamann, J. J., 'Functionally Gradient Material Representation by Volumetric Multi-Textring for Solid Freeform Fabrication', 11th Annual Solid Freeform Fabrication Symposium Austin, TX, 2000
  19. Requicha, A., 'Representations for Rigid Solids: Theory, Methods and Systems', Computing Surveys, Vol. 12, No. 4, 1980
  20. Hoffmann, C. M., Geometric & Solid Modeling, Morgan Kaufmann Publishers, 1989
  21. Kumar, V., Burns, D., Dutta, D. and Hoffman, C., 'A Framework for Object Modeling', Computer Aided Design, Vol. 31, pp. 541-556, 1999 https://doi.org/10.1016/S0010-4485(99)00051-2
  22. Drake, J. T., Williamson, R. L. and Rabin, B. H., 'Finite Element Analysis of Thermal Residual Stresses at Graded Ceramic-Metal Interfaces', Part II, Interface Optimization for Residual Stress Reduction, Journal of Applied Physics, Vol. 74, No. 2, pp. 1321-1326, 1993 https://doi.org/10.1063/1.354911
  23. Williamson, R. L., Rabin, B. H. and Byerly, G. E., 'FEM Study of the Effects of Interlayers and Creep in Reducing Residual Stresses and Strains in CeramicMetal Joints', Composites Engineering, Vol. 5, No. 7, pp. 851-863, 1995 https://doi.org/10.1016/0961-9526(95)00035-L
  24. Holt, B., Koizurni, M., Hirai, T. and Munir, Z., Editors, 'Functionally Gradient Materials', Ceramic Transactions, Vol. 34, 1993
  25. Hirano, T. and Wakashima, K., 'Mathematical Modeling and Design', Special Issue on Functionally Gradient Materials, MRS Bulletin, pp. 40-42, 1995
  26. Suresh, S. and Mortensen, A., 'Functionally Graded Metals and Metal-Ceramic Composites: Thermomechanical Behavior', International Materials Reviews, Vol. 42, No. 3, pp. 85-116, 1997
  27. Weng, G. J., Taya, M. and Abe, H., Editor, Springer-Verlag, Micromechanics and Inhomogeneity, 1990
  28. Nemat-Nasser, S. and Hori, M., Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier Scientific Publishers, 1993
  29. Zuiker, J. R., 'Functionally Graded Materials: Choice of Micromechanics Model and Limitations in Property Variation', Composites Engineering, Vol. 5, No. 7, pp. 807-819, 1995 https://doi.org/10.1016/0961-9526(95)00031-H
  30. Markworth, A. J., Ramesh, K. S. and Parks, W. P., 'Modelling Studies Applied to Functionally Graded Materials - Review', Journal of Material Science, Vol. 30, pp. 2183-2193, 1995 https://doi.org/10.1007/BF01184560
  31. 이관행, 'Rapid Prototyping 기술에 대한 고찰', 한국CAD/CAM학회지, 제2권, 제2호, 1996
  32. 지해성, 서정훈, '레이저를 이용한 직접금속조형 (DMD)기술', 한국CAD/CAM학회논문집, 제8권, 제3호, pp. 150-156, 2003
  33. 김준환, 천상욱, 한순흥, 'STEP-Compliant CNC를 위한 STEP-NC Repository 구축', 한국CAD/CAM 학회논문집 , 제8권, 제1호, pp. 48-54, 2003