Properties of Polyacrylonitrile/Single Wall Carbon Nanotube Composite Films Prepared in Nitric Acid

  • Kim Seong Hoon (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Min Byung Gil (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Lee Sang Cheol (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology)
  • Published : 2005.06.01

Abstract

Nanocomposite films were prepared by casting the solution of polyacrylonitrile (PAN) and single wall nanotube (SWNT) in nitric acid subsequent to sonication. Even though SWNT shows good dispersion visually, the reinforcing effect was not satisfactory. The G-band Raman spectra of the drawn film clearly demonstrated that SWNTs in the film are well-oriented along the drawing axis of the film. The electrical resistivity of the film prepared using nitric acid was lower than that of the film using DMF. Thus, nitric acid is presumably more effective in dispersing nanotubes than DMF.

Keywords

References

  1. B. Schartel, P. Potschke, U. Knoll, and M. Abdel-Goad, Euro. Polym. J., 41(5), 1061 (2005) https://doi.org/10.1016/j.eurpolymj.2004.11.023
  2. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science, 297, 787 (2002) https://doi.org/10.1126/science.1060928
  3. D. W. Ferguson, E. W. S. Bryant, and H. C. Fowler, ANTEC '98, 1219 (1998)
  4. B. Lahr and J. Sandler, Kunststoffe, 90, 94 (2000)
  5. D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, Appl. Phys. Lett., 76, 2868 (2000) https://doi.org/10.1063/1.126500
  6. J. K. W. Sandler, S. Pegel, M. Cadek, F. Gojny, M. van Es, J. Lohmar, W. J. Blau, K. Schulte, A. H. Windle, and M. S. P. Shaffer, Polymer, 45, 2001 (2004) https://doi.org/10.1016/j.polymer.2004.01.023
  7. G. Beyer, Fire Mater., 26, 291 (2002) https://doi.org/10.1002/fam.805
  8. T. Kashiwagi, E. Grulke, J. Hilding, R. Harris, W. Awad, and J. Douglas, Macromol. Rapid Commun., 23, 761 (2002) https://doi.org/10.1002/1521-3927(20020901)23:13<761::AID-MARC761>3.0.CO;2-K
  9. G. Beyer, Gummi Fasern Kunstst, 55, 596 (2002)
  10. T. Kashiwagi, E. Grulke, J. Hilding, K. Groth, R. Harris, K. Butler, J. Shields, S. Kharchenko, and J. Douglas, Polymer, 45, 4227 (2004) https://doi.org/10.1016/j.polymer.2004.03.088
  11. K. Lau, M. Lu, C. Lam, H. Cheung, F. Sheng, and H. Li, Comp. Sci. and Tech., 65(5), 719 (2005) https://doi.org/10.1016/j.compscitech.2004.10.005
  12. T. V. Sreekumar, T. Liu, B. G. Min, H. Guo, S. Kumar, and R. H. Hauge et al., Adv. Mater., 16, 58 (2004) https://doi.org/10.1002/adma.200305456
  13. S. H. Kim, B. G. Min, S. C. Lee, S. B. Park, T. D. Lee, M. Park, and S. Kumar, Fibers and Polymers, 5(3), 198 (2004) https://doi.org/10.1007/BF02902999
  14. A. R. Bhattacharyya, T. V. Sreekumar, T. Liu, S. Kumar, L. M. Ericson, R. H. Hauge, and R. E. Smalley, Polymer, 44, 2373 (2003) https://doi.org/10.1016/S0032-3861(03)00073-9
  15. T. V. Sreekumar, T. Liu, B. G. Min, H. Guo, S. Kumar, R. H. Hauge, and R. E. Smalley, Adv. Mater., 16, 58 (2004) https://doi.org/10.1002/adma.200305456
  16. J. Liu, M. J. Casavant, M. Cox, D. A. Walters, P. Boul, W. Lu, A. J. Rimberg, K. A. Smith, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett., 303, 125 (1999) https://doi.org/10.1016/S0009-2614(99)00209-2
  17. J. M. Bonard, T. Stora, J. P. Salvetant, F. Maier, T. Stockli, C. Duschl, L. Forro, W. A. de Heer, and A. Chatelain, Adv. Mater., 9(10), 827 (1997) https://doi.org/10.1002/adma.19970091014
  18. W. Huang, Y. Lin, S. Taylor, J. Gaillard, A. M. Rao, and YP. Sun, Nano Letters, 2(3), 231 (2002) https://doi.org/10.1021/nl010083x
  19. M. S. Dresselhaus and P. C. Eklund, Adv. Phys., 49, 705 (2000) https://doi.org/10.1080/000187300413184
  20. M. A. Pimenta, A. Marucci, S. A. Empedocles, M. G. Bawendi, E. B. Hanlon, A. M. Rao, P. C. Eklund, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B, 58, R16016 (1998) https://doi.org/10.1103/PhysRevB.58.R16016
  21. S. D. M. Brown, A. Jorio, P. Corio, M. S. Dresselhaus, G. Dresselhaus, R. Satio, and K. Kneipp, Phys. Rev. B, 63, 155411 (2001) https://doi.org/10.1103/PhysRevB.63.155411
  22. A. Jorio et al., Phys. Rev. B, 65, 121402 (2002) https://doi.org/10.1103/PhysRevB.65.121402
  23. G. S. Duesberg, I. Loa, M, Burghard, K. Syassen, and S. Roth, Phys. Rev. Lett., 85(25), 5436 (2000) https://doi.org/10.1103/PhysRevLett.85.5436
  24. Y. J. Kim, T. S. Shin, H. D. Choi, J. H. Kwon, Y. C. Chung and H. G. Yoon, Carbon, 43(1), 23 (2005) https://doi.org/10.1016/j.carbon.2004.08.015