Preparation of Regenerated Cellulose Fiber via Carbonation (II) - Spinning and Characterization -

  • Oh Sang Youn (Department of Textile Engineering, Chonnam National University) ;
  • Yoo Dong Il (Department of Textile Engineering, Chonnam National University) ;
  • Shin Younsook (Department of Textile Engineering, Chonbuk National University) ;
  • Kim Hak Yong (Department of Textile Engineering, Chonbuk National University) ;
  • Kim Hwan Chul (Department of Textile Engineering, Chonbuk National University) ;
  • Chung Yong Sik (Department of Textile Engineering, Chonbuk National University) ;
  • Park Won Ho (Department of Textile Engineering, Chungnam National University) ;
  • Youk Ji Ho (Department of Textile Engineering, Inha University)
  • Published : 2005.06.01

Abstract

Sodium cellulose carbonate (CC-Na) dissolved in $8.5\;wt\%$ NaOH/ZnO (100/2-3, w/w) aqueous solution was spun into some acidic coagulant systems. Diameter of regenerated cellulose fibers obtained was in the range of $15-50\;{\mu}m$. Serrated or circular cross sectional views were obtained by controlling salt concentration or acidity in the acid/salt/water coagulant systems. Velocity ratio of take-up to spinning was controlled up to 4/1 with increasing spinning velocity from 5 to 40 m/min. Skin structure of was developed at lower acidity or higher concentration of coagulants. Fineness, tenacity and elongation of the regenerated cellulose fibers were in the range of 1.5-27 denier, 1.2-2.2 g/d, and $8-11.3\;\%$, respectively. All of CC-Na and cellulose fibers spun from CC-Na exhibited cellulose II crystalline structure. Crystallinity index was increased with increasing take-up speed.

Keywords

References

  1. N. Jinmin, Y. Fujita, T. Arai, A. Kondo, Y. Morikawa, H. Okada, M. Ueda, and A. Tanaka, Journal of Molecular Catalysis B: Enzymatic, 17, 197 (2002) https://doi.org/10.1016/S1381-1177(02)00028-0
  2. J. Tkac, I. Vostiar, P. Gemeiner, and E. Sturdik, Bioelectrochemistry, 55, 149 (2002) https://doi.org/10.1016/S1567-5394(01)00130-X
  3. A. F. Turbak, R. B. Hammer, R. E. Davies, and H. L. Hergert, Chemtech., 10, 51 (1980)
  4. H. P. Fink, P. Weigel, H. J. Purz, and J. Ganster, Progress in Polymer Science, 26, 1473 (2001) https://doi.org/10.1016/S0079-6700(01)00002-8
  5. T. Rosenau, A. Potthast, H. Sixta, and P. Kosma, Progress in Polymer Science, 26, 1763 (2001) https://doi.org/10.1016/S0079-6700(01)00002-8
  6. O. Biganska and P. Navard, Polymer, 44, 1035 (2003) https://doi.org/10.1016/S0032-3861(02)00902-3
  7. R. W. Moncrieff, 'Man-Made Fibres', 6th Ed., pp.162-299, Newnes-Butter Worths, London, 1975
  8. J. I. Kroschwitz, 'Polymers: Fibers and Textiles, A Compendium', pp.746-772, John Wiley & Sons, Inc., New York,1990
  9. M. J. Negro, P. Manzanares, J. M. Oliva, I. Ballesteros, and M. Ballesteros, Biomass and Bioenergy, 25, 301 (2003) https://doi.org/10.1016/S0961-9534(03)00017-5
  10. T. Jeoh and F. A. Agblevor, Biomass and Bioenergy, 21, 109 (2001) https://doi.org/10.1016/S0961-9534(01)00016-2
  11. W. Mormann and U. Michel, Carbohydrate Polymers, 50, 201 (2002) https://doi.org/10.1016/S0144-8617(02)00016-4
  12. A. M. A. Nada, S. Kamel, and M. E. Sakhawy, Polymer Degradation and Stability, 70,347 (2000) https://doi.org/10.1016/S0141-3910(00)00119-1
  13. S. Y. Oh, D. I. Yoo, Y. Shin, W. S. Lee, and S. M. Jo, Fibers and Polymers, 3, 1 (2002) https://doi.org/10.1007/BF02875361
  14. S. Y. Oh, D. I. Yoo, Y. Shin, and G. Seo, Carbohydrate Research, 340, 417 (2005) https://doi.org/10.1016/j.carres.2004.11.027
  15. H. A. Krassig, 'Cellulose; Structure, Accessibility and Reactivity, Polymer Monographs VII', pp.88-90, Gordon and Breach Science Publishers, Switzerland, 1993
  16. N. E. Franks and J. K. Varga, U.S. Patent, 4,196,282, (1980)
  17. A. F. Turbak, R. B. Hammer, R. E. Davies, and H. L. Hergert, Chem. Technol., 11, 702 (1977)
  18. O. Biganska and P. Navard, Polymer, 44, 1035 (2003) https://doi.org/10.1016/S0032-3861(02)00902-3
  19. G. F. Davidson, J Text. Inst., 28, 27 (1937) https://doi.org/10.1080/19447023708631789
  20. Z. Jinping and Z. Lina, Polymer J, 32, 866 (2000) https://doi.org/10.1295/polymj.32.866
  21. C. Bergner and B. Phillip, Cellulose Chem. Technol., 20, 591 (1986)
  22. B. Morgenstern and H. W. Kammer, Polymer J., 40, 1299 (1999) https://doi.org/10.1016/S0032-3861(98)00267-5
  23. C. Bergner and B. Phillip, Cellulose Chem. Technol., 20, 591 (1986)
  24. E. E. Treiber in 'Cellulose and Its Derivatives', (T. P. Nevell and S. H. Zeronian Eds.), pp.454-469, Ellis Horwood Limited, Chiche, 1987
  25. J. W. S. Hearle in 'Regenerated Cellulose Fibers', (C. Woodings Eds.), pp.201-202, Woodhead Publishing Limited, Cambridge, 2001
  26. R. W. Moncrieff, 'Man-Made Fibres', 6th Ed., NewnesButter Worths, London, pp.164-168 and 279-289,1975
  27. N. S. Wooding in 'Rayon and Acetate Fibers', (J. W. S. Hearle and R. H. Peters Eds.), pp41-57, in Fiber Structure, The Textile Institute, Manchester, 1963
  28. D. Gagnaire, D. Mancier, and D. M. Vincendon, J. Polym. Sci., Polym. Chem. Edn., 18, 13 (1980) https://doi.org/10.1002/pol.1980.170180102
  29. A. Sarko, J. Southwick, and J. Hayashi, Macromolecules. 9, 857 (1976) https://doi.org/10.1021/ma60053a028
  30. L. M. J. Kroon-Batenburg, J. Kroon, and M. G. Northolt. Polym. Commun., 27, 290 (1986) https://doi.org/10.1016/0032-3861(86)90342-3