Fuzzy (r, s)-preopen sets

Seung On Lee and Eun Pyo Lee

Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea Department of Mathematics, Seonam University, Namwon 590-711, Korea

Abstract

In this paper, we introduce the concepts of fuzzy (r, s)-preopen sets and fuzzy (r, s)-precontinuous mappings on intuitionistic fuzzy topological spaces in Sostak's sense and then we investigate some of their characteristic properties.

Key words: fuzzy (r, s)-preopen sets, fuzzy (r, s)-precontinuous mappings

1. Introduction

The concept of fuzzy set was introduced by Zadeh [11]. These spaces and its generalizations are later studied by several authors, one of which, developed by Sostak [10], used the idea of degree of openness. This type of generalization of fuzzy topological spaces was later rephrased by Chattopadhyay, Hazra, and Samanta [3], and by Ramadan [9].

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was introduced by Atanassov [1]. Recently, Coker and his colleagues [4,5,7] introduced intuitionistic fuzzy topological spaces using intuitionistic fuzzy sets.

Using the idea of degree of openness and degree of nonopenness, Coker and Demirci [5] defined intuitionistic fuzzy topological spaces in Sostak's sense as a generalization of smooth fuzzy topological spaces and intuitionistic fuzzy topological spaces.

In this paper, we introduce the concepts of fuzzy (r, s)-preopen sets and fuzzy (r, s)-precontinuous mappings on intuitionistic fuzzy topological spaces in Sostak's sense and then we investigate some of their characteristic properties.

2. Preliminaries

Let I be the unit interval [0,1] of the real line. A member μ of I^X is called a fuzzy set of X. For any $\mu \in I^X$, μ^c denotes the complement $1-\mu$. By 0 and 1 we denote constant mappings on X with value 0 and 1, respectively. All other notations are standard notations of fuzzy set theory.

Let X be a nonempty set. An intuitionistic fuzzy set A is an ordered pair

Manuscript received Apr. 4, 2005; revised May. 9, 2005 This work was supported by the research grant of Chungbuk National University in 2005

$$A = (\mu_A, \gamma_A)$$

where the functions $\mu_A: X \to I$ and $\gamma_A: X \to I$ denote the degree of membership and the degree of nonmembership, respectively, and $\mu_A + \gamma_A \le T$.

Obviously every fuzzy set μ on X is an intuitionistic fuzzy set of the form $(\mu, \gamma - \mu)$.

Definition 2.1. ([1]) Let $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ be intuitionistic fuzzy sets on X. Then

- (1) $A \subseteq B$ iff $\mu_A \le \mu_B$ and $\gamma_A \ge \gamma_B$.
- (2) A = B iff $A \subseteq B$ and $B \subseteq A$.
- (3) $A^c = (\gamma_A, \mu_A)$.
- (4) $A \cap B = (\mu_A \wedge \mu_B, \gamma_A \vee \gamma_B)$.
- (5) $A \cup B = (\mu_A \vee \mu_B, \gamma_A \wedge \gamma_B)$
- (6) $0_{\sim} = (0, 1)$ and $1_{\sim} = (1, 0)$.

Let f be a mapping from a set X to a set Y. Let $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy set of X and $B = (\mu_B, \gamma_B)$ an intuitionistic fuzzy set of Y. Then:

(1) The image of A under f, denoted by f(A) is an intuitionistic fuzzy set in Y defined by

$$f(A) = (f(\mu_A), \Im - f(\Im - \gamma_A)).$$

(2) The inverse image of B under f, denoted by $f^{-1}(B)$ is an intuitionistic fuzzy set in X defined by

$$f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B))$$

A smooth fuzzy topology on X is a mapping $T: I^X \to I$ which satisfies the following properties:

- (1) T(7) = T(1) = 1
- (2) $T(\mu_1 \wedge \mu_2) \ge T(\mu_1) \wedge T(\mu_2)$.
- (3) $T(\vee \mu_i) \ge \wedge T(\mu_i)$.

The pair (X, T) is called a smoot fuzzy topological spaces.

An intuitionistic fuzzy topology X is a family T of intuitionistic fuzzy sets in X which satisfies the following properties:

- (1) $0_{\sim}, 1_{\sim} \in T$
- (2) If $A_1, A_2 \in T$, then $A_1 \cap A_2 \in T$.
- (3) If $A_i \in T$ for all i, then $\bigcup A_i \in T$.

The pair (X, T) is called an *intuitionistic fuzzy topological* space.

Let I(X) be a family of all intuitionistic fuzzy sets of X and let $I \otimes I$ be the set of the pair (r, s) such that $r, s \in I$ and $r+s \le 1$.

Definition 2.2. ([5]) Let X be a nonempty set. An intuitionistic fuzzy topology in Sostak's sense (SoIFT for short) $\tau = (\tau_1, \tau_2)$ on X is a mapping $\tau: I(X) \rightarrow I \otimes I$ which satisfies the following properties:

- (1) $\tau_1(0_{\sim}) = \tau_1(1_{\sim}) = 1$ and $\tau_2(0_{\sim}) = \tau_2(1_{\sim}) = 0$.
- (2) $\tau_1(A \cap B) \ge \tau_1(A) \wedge \tau_1(B)$ and $\tau_2(A \cap B) \le \tau_2(A) \vee \tau_2(B)$.
- (3) $\tau_1(\bigcup A_i) \ge \wedge \tau_1(A_i)$ and $\tau_2(\bigcup A_i) \le \vee \tau_2(A_i)$.

The $(X, \tau) = (X, \tau_1, \tau_2)$ is said to be an intuitionistic fuzzy topological space in Sostak's sense (SoIFTS for short). Also, we call $\tau_1(A)$ a gradation of openness of A and $\tau_2(A)$ a gradation of nonopenness on A.

Definition 2.3. ([8]) Let A be an intuitionistic fuzzy set in a SoIFTS (X, τ_1, τ_2) and $(r, s) \in I \otimes I$. Then A is said to be

- (1) fuzzy (r, s)-open if $\tau_1(A) \ge r$ and $\tau_2(A) \le s$,
- (2) fuzzy (r, s)-closed if $\tau_1(A^c) \ge r$ and $\tau_2(A^c) \le s$.

Definition 2.4. Let (X, τ_1, τ_2) be a SoIFTS. For each $(r, s) \in I \otimes I$ and for each $A \in I(X)$, the fuzzy (r, s)-interior is defined by

$$int(A, r, s) = \bigcup \{B \in I(X) | A \supseteq B, \\ B \text{ is } fuzzy(r, s) - open\}$$

and the fuzzy (r, s)-closure is defined by

$$cl(A, r, s) = \bigcap \{B \in I(X) | A \subseteq B, B \text{ is } fuzzy(r, s) - closed\}.$$

The operators int: $I(X) \times I \otimes I \to I(X)$ and cl: $I(X) \times I \otimes I \to I(X)$ are called the *fuzzy interior operator* and *fuzzy closure operator* in (X, τ_1, τ_2) , respectively.

Lemma 2.5 [8] For an intuitionistic fuzzy set A in a SoIFTS (X, τ_1, τ_2) and $(r, s) \in I \otimes I$,

- (1) $int(A, r, s)^c = cl(A^c, r, s).$
- (2) $cl(A, r, s)^c = int(A^c, r, s)$.

Let (X, τ) be an intuitionistic fuzzy topological space in Sostak's sense. Then it is easy to see that for each

 $(r,s) \in I \otimes I$, the family $\tau_{(r,s)}$ defined by

$$\tau_{(r,s)} = A \in I(X) | \tau_1(A) \ge r$$
 and $\tau_2(A) \le s$

is an intuitionistic fuzzy topology on X.

Let (X, T) be an intuitionistic fuzzy topological space and $(r, s) \in I \otimes I$. Then the map $T^{(r, s)}: I(X) \rightarrow I \otimes I$ defined by

$$T^{(r,s)}(A) = \begin{cases} (1,0)^{\circ} & \text{if } A = 0, 1, \\ (r,s) & \text{if } A \in T - \{0, 1, 1, \}, \\ (0,1) & \text{otherwise} \end{cases}$$

becomes an intuitionistic fuzzy topology in Sostak's sense on X.

Definition 2.6. Let A be an intuitionistic fuzzy set in a SoIFTS (X, τ_1, τ_2) and $(r, s) \in I \otimes I$. Then A is said to be

- (1) fuzzy (r, s)-semiopen if there is a fuzzy (r, s)-open set B in X such that $B \subseteq A \subseteq cl(B, r, s)$,
- (2) fuzzy (r, s)-semiclosed if there is a fuzzy (r, s)-closed set B in X such that $int(B, r, s) \subseteq A \subseteq B$.

3. Fuzzy (r, s)-semiopen sets

Definition 3.1. Let A be an intuitionistic fuzzy set in a SoIFTS (X, τ_1, τ_2) and $(r, s) \in I \otimes I$. Then A is said to be

- (1) fuzzy (r, s)-preopen if $A \subseteq int(cl(A, r, s), r, s)$,
- (2) fuzzy (r, s)-semiclosed if $cl(int(A, r, s), r, s) \subseteq A$.

Theorem 3.2. Let A be an intuitionistic fuzzy set in a SoIFTS (X, τ_1, τ_2) and $(r, s) \in I \otimes I$. Then the following statements are equivalent:

- (1) A is a fuzzy (r, s)-preopen set.
- (2) A^c is a fuzzy (r, s)-preclosed set.

Proof. It follows from Lemma 2.5.

It is obvious that every fuzzy (r, s)-open ((r, s)-closed) set is a fuzzy (r, s)-preopen ((r, s)-preclosed) set but the converse need not be true which is shown by the following example.

Example 3.3. Let $X = \{x, y\}$ and let A_1 and A_2 be intuitionistic fuzzy set of X defined as

$$A_1(x) = (0.5, 0.2), A_1(y) = (0.1, 0.7);$$

and

$$A_2(x) = (0.6, 0.2), A_2(y) = (0.5, 0.3).$$

Define $\tau I(X) \to I \otimes I$ by

$$\tau(A) = (\tau_1(A), \tau_2(A)) = \begin{cases} (1,0) & \text{if} \quad A = 0 \text{ \sim, 1 \sim,} \\ (\frac{1}{2}, \frac{1}{3}) & \text{if} \quad A = A_1, \\ (0,1) & \text{otherwise.} \end{cases}$$

Then clearly (τ_1, τ_2) is a SoIFT on X. The intuitionistic

fuzzy set A_2 is a fuzzy $(\frac{1}{2}, \frac{1}{3})$ -preopen set which is not a fuzzy $(\frac{1}{2}, \frac{1}{3})$ -open set. Also, A_2^c is a fuzzy $(\frac{1}{2}, \frac{1}{3})$ -preclosed set which is not a fuzzy $(\frac{1}{2}, \frac{1}{3})$ -closed set.

Theorem 3.4. Let (X, τ_1, τ_2) be a SoIFTS and $(r, s) \in I \otimes I$.

- (1) If $\{A_i\}$ is a family of fuzzy (r, s)-preopen sets of X, then $\bigcup A_i$ is fuzzy (r, s)-preopen.
- (2) If $\{A_i\}$ is a family of fuzzy (r, s)-preclosed sets of X, then $\bigcap A_i$ is fuzzy (r, s)-preclosed.

Proof. (1) Let $\{A_i\}$ be a collection of fuzzy (r, s)-preopen sets. Then for each i,

$$A_i \subseteq \operatorname{int}(\operatorname{cl}(A_i, r, s), r, s)$$

So

$$\bigcup A_i \subseteq \bigcup \operatorname{int}(\operatorname{cl}(A, r, s), r, s) \subseteq \operatorname{int}(\operatorname{cl}(\bigcup A_i, r, s), r, s)$$

Thus $\bigcup A_i$ is a fuzzy (r, s)-preopen set.

(2) It follows from (1) using Theorem 3.2.

That fuzzy (r, s)-semiopen sets and fuzzy (r, s)-preopen sets are independent notions is shown by the following two examples.

Example 3.5. Let $X = \{x, y\}$ and let A_1 and A_2 be intuitionistic fuzzy set of X defined as

$$A_1(x) = (0.2, 0.6), A_1(y) = (0.4, 0.3);$$

and

$$A_2(x) = (0.7, 0.2), A_2(y) = (0.2, 0.5).$$

Define $r: I(X) \to I \otimes I$ by

$$\tau(A) = (\tau_1(A), \tau_2(A)) = \begin{cases} (1,0) & \text{if} \quad A = 0 \ \text{\sim}, 1 \ \text{\sim}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if} \quad A = A_1, \\ (0,1) & \text{otherwise}. \end{cases}$$

Then clearly (τ_1, τ_2) is a SoIFT on X. The intuitionistic fuzzy set A_2 is a $(\frac{1}{2}, \frac{1}{3})$ -preopen set which is not a fuzzy $(\frac{1}{2}, \frac{1}{3})$ -semiopen.

Example 3.6. Let $X = \{x, y\}$ and let A_1 and A_2 be intuitionistic fuzzy set of X defined as

$$A_1(x) = (0.2, 0.7), A_1(y) = (0.1, 0.8);$$

and

$$A_2(x) = (0.5, 0.3), A_2(y) = (0.7, 0.2).$$

Define
$$\tau I(X) \to I \otimes I$$
 by

$$\tau(A) = (\tau_1(A), \tau_2(A)) = \begin{cases} (1,0) & \text{if} \quad A = 0 \ \text{,} 1 \ \text{,} \\ (\frac{1}{2}, \frac{1}{3}) & \text{if} \quad A = A_1, \\ (0,1) & \text{otherwise.} \end{cases}$$

Then clearly (τ_1, τ_2) is a SoIFT on X. The intuitionistic fuzzy set A_2 is a fuzzy $(\frac{1}{2}, \frac{1}{3})$ -semiopen set which is not a fuzzy $(\frac{1}{2}, \frac{1}{3})$ -preopen set.

Definition 3.7. Let (X, τ_1, τ_2) be a SoIFTS. For each $(r, s) \in I \otimes I$ and for each $A \in I(X)$, the fuzzy (r, s)-preinterior is defined by

$$pint(A, r, s) = \bigcup \{B \in I(X) | A \supseteq B, B \text{ is fuzzy } (r, s) - preopen\}$$

and the fuzzy (r, s)-preclosure is defined by

$$pcl(A, r, s) = \bigcap \{B \in I(X) | A \subseteq B, B \text{ is fuzzy } (r, s) - < losed\}.$$

Obviously $\operatorname{pcl}(A, r, s)$ is the smallest fuzzy (r, s)-preclosed set which contains A and $\operatorname{pint}(A, r, s)$ is the greatest fuzzy (r, s)-preopen set which is contained in A. Also, $\operatorname{pcl}(A, r, s) = A$ for any fuzzy (r, s)-preclosed set A and $\operatorname{pint}(A, r, s) = A$ for any fuzzy (r, s)-preopen set A. Moreover, we have

$$int(A, r, s) \subseteq int(A, r, s) \subseteq A
\subseteq pcl(A, r, s) \subseteq cl(A, r, s).$$

Also, we have the following results:

- (1) $pcl(0_{\sim}, r, s) = 0_{\sim}, pcl(1_{\sim}, r, s) = 1_{\sim}.$
- (2) $pcl(A, r, s) \supseteq A$.
- (3) $\operatorname{pcl}(A \cup B, r, s) \supseteq \operatorname{pcl}(A, r, s) \cup \operatorname{pcl}(B, r, s)$.
- (4) pcl(pcl(A, r, s), r, s) = pcl(A, r, s).
- (5) $pint(0_{\sim}, r, s) = 0_{\sim}, pint(1_{\sim}, r, s) = 1_{\sim}$
- (6) $pint(A, r, s) \subseteq A$.
- (7) $\operatorname{pint}(A \cap B, r, s) \subseteq \operatorname{pint}(A, r, s) \cap \operatorname{pint}(B, r, s)$.
- (8) pint(pint(A, r, s), r, s) = pint(A, r, s).

Theorem 3.8. For an intuitionistic fuzzy set A of a SoIFTS (X, τ_1, τ_2) and $(r, s) \in I \otimes I$, we have:

- (1) $pint(A, r, s)^c = pcl(A^c, r, s)$.
- (2) $pcl(A, r, s)^c = pint(A^c, r, s)$.

Proof. (1) Since $pint(A, r, s) \subseteq A$ and pint(A, r, s) is fuzzy (r, s)-preopen in X, $A^c \subseteq pint(A, r, s)^c$ and $pint(A, r, s)^c$ is fuzzy (r, s)-preclosed in X. Thus

$$pcl(A^c, r, s) \subseteq pcl(pint(A, r, s)^c, r, s)$$

= $pint(A, r, s)^c$.

Conversely, since $A^c \subseteq \operatorname{pcl}(A^c, r, s)$ and $\operatorname{pcl}(A^c, r, s)$ is fuzzy (r, s)-preclosed in X, $\operatorname{pcl}(A^c, r, s)^c \subseteq A$ and $\operatorname{pcl}(A^c, r, s)^c$ is fuzzy (r, s)-preopen in X. Thus

$$pcl(A^c, r, s)^c = pint(scl(A^c, r, s)^c, r, s)$$

$$\subseteq pint(A, r, s)$$

and hence $pint(A, r, s)^c \subseteq pcl(A^c, r, s)$.

(2) Similar to (1).

Definition 3.9. Let $f:(X, \tau_1, \tau_2) \to (Y, \omega_1, \omega_2)$ be a mapping from a SoIFTS X to a SoIFTS Y and $(r, s) \in I \otimes I$. Then f is said to be

- (1) fuzzy (r, s)-precontinuous if $f^{-1}(B)$ is a fuzzy (r, s)-preopen set of X for each fuzzy (r, s)-open set B of Y,
- (2) fuzzy (r, s)-preopen if f(A) is a fuzzy (r, s)-preopen set of Y for each fuzzy (r, s)-open set A of X,
- (3) fuzzy (r, s)-preclosed if f(A) is a fuzzy (r, s)-preclosed set of Y for each fuzzy (r, s)-closed set A of X.

In general, it need not be true that f and g are fuzzy (r, s)-precontinuous ((r, s)-preopen and (r, s)-preclosed, respectively) mappings then so is $g \circ f$. But we have the following theorem.

Theorem 3.10. Let (X, τ_1, τ_2) , (Y, ω_1, ω_2) and (Z, σ_1, σ_2) be SoIFTSs and let $f: X \to Y$ and $g: Y \to Z$ be mappings and $(r, s) \in I \otimes I$. Then the following statements are true:

- (1) If f is a fuzzy (r, s)-precontinuous mapping and g is a fuzzy (r, s)-continuous mapping, then $g \circ f$ is a fuzzy (r, s)-precontinuous mapping.
- (2) If f is a fuzzy (r, s)-open mapping and g is a fuzzy (r, s)-preopen mapping, then $g \circ f$ is a fuzzy (r, s)-preopen mapping.
- (3) If f is a fuzzy (r, s)-closed mapping and g is a fuzzy (r, s)-preclosed mapping, then $g \circ f$ is a fuzzy (r, s)-preclosed mapping.

Proof. Straightforward.

Theorem 3.11. Let $f:(X, \tau_1, \tau_2) \to (Y, \omega_1, \omega_2)$ be a mapping and $(r, s) \in I \otimes I$. Then the following statements are equivalent:

- (1) f is a fuzzy (r, s)-precontinuous mapping.
- (2) $f^{-1}(B)$ is a fuzzy (r, s)-preclosed set of X for each fuzzy (r, s)-closed set B of Y.
- (3) $f^{-1}(\operatorname{cl}(B, r, s)) \supseteq \operatorname{cl}(\operatorname{int}(f^{-1}(B), r, s), r, s)$ for each intuitionistic fuzzy set B of Y.
- (4) $\operatorname{cl}(f(A), r, s) \supseteq f(\operatorname{cl}(\operatorname{int}(A, r, s), r, s))$ for each intuitionistic fuzzy set A of X.

Proof.(1) \leftrightarrow (2) It is obvious.

(2) \rightarrow (3) Let B be any intuitionistic fuzzy set of Y. Then cl(B, r, s) is a fuzzy (r, s)-closed set of Y. By (2), $f^{-1}(cl(B, r, s))$ is a fuzzy (r, s)-preclosed set of X. Thus

$$f^{-1}(\operatorname{cl}(B, r, s)) \supseteq \operatorname{cl}(\operatorname{int}(f^{-1}(\operatorname{cl}(B, r, s)), r, s), r, s)$$

 $\supseteq \operatorname{cl}(\operatorname{int}(f^{-1}(B), r, s), r, s).$

(3) \rightarrow (4) Let A be any intuitionistic fuzzy set of X. Then f(A) is an intuitionistic fuzzy set of Y. By (3),

$$f^{-1}(\operatorname{cl}(f(A), r, s)) \supseteq \operatorname{cl}(\operatorname{int}(f^{-1}f(A), r, s), r, s)$$

$$\supseteq \operatorname{cl}(\operatorname{int}(A, r, s), r, s).$$

Hence

$$cl(f(A), r, s) \supseteq ff^{-1}(cl(f(A), r, s))$$

$$\supseteq f(cl(int(A, r, s), r, s)).$$

(4) \rightarrow (2) Let B be any fuzzy (r, s)-closed set of Y. Then $f^{-1}(B)$ is an intuitionistic fuzzy set of X. By (4),

$$f(cl(int(f^{-1}(B), r, s), r, s)) \subseteq cl(f f^{-1}(B), r, s)$$

 $\subseteq cl(B, r, s) = B$

and hence

cl(int(
$$f^{-1}(B), r, s$$
), r, s) $\subseteq f^{-1}f(\text{cl}(\text{int}(f^{-1}(B), r, s), r, s))$
 $\subseteq f^{-1}(B)$.

Thus $f^{-1}(B)$ is a fuzzy (r, s)-preclosed set of X.

References

- K. T. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and Systems 20 (1986), 87-90.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [3] K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, Gradation of openness: fuzzy topology, Fuzzy Sets and Systems 49 (1992), 237-242.
- [4] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81-89.
- [5] D. Coker and M. Demirci, An introduction to intuitionistic fuzzy topological spaces in Sostak's sense, BUSEFAL 67 (1996), 67-76.
- [6] D. Coker and A. Haydar Es, On fuzzy compactness in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 3 (1995), 899-909.
- [7] H. Gurcay, D. Coker and A. Haydar Es, On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 5 (1997), 365-378.
- [8] E. P. Lee, Semiopen sets on intuitionistic fuzzy topological spaces in Sostack's sense, J. of Fuzzy Logic and Intelligent Systems 14 (2004), 234-238.
- [9] A. A. Ramadan, *Smooth topological spaces*, Fuzzy Sets and Systems 48 (1992), 371-375.
- [10] A. Sostak, On a fuzzy topological structure, Supp. Rend. Circ. Mat. Palermo (Ser. II) 11 (1985), 89-103.
- [11] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.

Seung On Lee

Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea

E-mail: solee@chungbuk.ac.kr

Eun Pyo Lee

Department of Mathematics, Seonam University, Namwon 590-711, Korea

E-mail: eplee@seonam.ac.kr