Use of Clostridium septicum Alpha Toxins for Isolation of Various Glycosylphosphatidylinositol-Deficient Cells

  • Shin Dong-Jun (Genomic Research Center for Enteropathogenic Bacteria and Department of Microbiology, Chonnam National University Medical School) ;
  • Choy Hyon E. (Genomic Research Center for Enteropathogenic Bacteria and Department of Microbiology, Chonnam National University Medical School) ;
  • Hong Yeongjin (Genomic Research Center for Enteropathogenic Bacteria and Department of Microbiology, Chonnam National University Medical School)
  • Published : 2005.06.01

Abstract

In eukaryotic cells, various proteins are anchored to the plasma membrane through glycosylphosphatidylinositol (GPI). To study the biosynthetic pathways and modifications of GPI, various mutant cells have been isolated from the cells of Chinese hamster ovaries (CHO) supplemented with several exogenous genes involved in GPI biosynthesis using aerolysin, a toxin secreted from gram-negative bacterium Aeromonas hydrophila. Alpha toxin from Gram-positive bacterium Clostridium septicum is homologous to large lobes (LL) of aerolysin, binds GPI-anchored proteins and possesses a cell-destroying mechanism similar to aerolysin. Here, to determine whether alpha toxins can be used as an isolation tool of GPI-mutants, like aerolysin, CHO cells stably transfected with several exogenous genes involved in GPI biosynthesis were chemically mutagenized and cultured in a medium containing alpha toxins. We isolated six mutants highly resistant to alpha toxins and deficient in GPI biosynthesis. By genetic complementation, we determined that one mutant cell was defective of the second subunit of dolichol phosphate mannose synthase (DPM2) and other five cells were of a putative catalytic subunit of inositol acyltransferase (PIG-W). Therefore, C. septicum alpha toxins are a useful screening probe for the isolation of various GPI-mutant cells.

Keywords

References

  1. Abrami, L., M. Fivaz, and F.G. van der Goot. 2000. Surface dynamics of aerolysin on the plasma membrane of living cells. Int. J. Med. Microbiol. 290, 363-367 https://doi.org/10.1016/S1438-4221(00)80042-9
  2. Ballard, J., A. Bryant, D. Stevens, and R.K. Tweten. 1992. Purification and characterization of the lethal toxin (alpha-toxin) of Clostridium septicum. Infect. Immun. 60, 784-790
  3. Ballard, J., J. Crabtree, B.A. Roe, and R.K. Tweten. 1995. The primary structure of Clostridium septicum alpha-toxin exhibits similarity with that of Aeromonas hydrophila aerolysin. Infect. Immun. 63, 340-344
  4. Diep, D.B., K.L. Nelson, S.M. Raja, E.N. Pleshak, and J.T. Buckley. 1998. Glycosylphosphatidylinositol anchors of membrane glycoproteins are binding determinants for the channel-forming toxin aerolysin. J. Biol. Chem. 273, 2355-2360 https://doi.org/10.1074/jbc.273.4.2355
  5. Eisenhaber, B., S. Maurer-Stroh, M. Novatchkova, G. Schneider, and F. Eisenhaber. 2003. Enzymes and auxiliary factors for GPI lipid anchor biosynthesis and post-translational transfer to proteins. Bioessays 25, 367-385 https://doi.org/10.1002/bies.10254
  6. Ferguson, M.A. 1999. The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J. Cell. Sci. 112 (Pt 17), 2799-2809
  7. Fivaz, M., L. Abrami, Y. Tsitrin, and F.G. van der Goot. 2001. Aerolysin from Aeromonas hydrophila and related toxins. Curr. Top. Microbiol. Immunol. 257, 35-52
  8. Gordon, V.M., K.L. Nelson, J.T. Buckley, V.L. Stevens, R.K. Tweten, P.C. Elwood, and S.H. Leppla. 1999. Clostridium septicum alpha toxins uses glycosylphosphatidylinositol-anchored protein receptors. J. Biol. Chem. 274, 27274-27280 https://doi.org/10.1074/jbc.274.38.27274
  9. Gowda, D.C. and E.A. Davidson. 1999. Protein glycosylation in the malaria parasite. Parasitol. Today 15, 147-152 https://doi.org/10.1016/S0169-4758(99)01412-X
  10. Hong, Y., K. Ohishi, J.Y. Kang, S. Tanaka, N. Inoue, J. Nishimura, Y. Maeda, and T. Kinoshita. 2003. Human PIG-U and yeast Cdc91p are the fifth subunit of GPI transamidase that attaches GPI-anchors to proteins. Mol. Biol. Cell. 14, 1780-1789 https://doi.org/10.1091/mbc.E02-12-0794
  11. Hong, Y., K. Ohishi, N. Inoue, J.Y. Kang, H. Shime, Y. Horiguchi, F.G. van der Goot, N. Sugimoto, and T. Kinoshita. 2002. Requirement of N-glycan on GPI-anchored proteins for efficient binding of aerolysin but not Clostridium septicum alphatoxin. EMBO J. 21, 5047-5056 https://doi.org/10.1093/emboj/cdf508
  12. Ikezawa, H. 2002. Glycosylphosphatidylinositol (GPI)-anchored proteins. Biol. Pharm. Bull. 25, 409-417 https://doi.org/10.1248/bpb.25.409
  13. Kang, J.Y., Y. Hong, H. Ashida, N. Shishioh, Y. Murakami, Y.S. Morita, Y. Maeda, and T. Kinoshita. 2005. PIG-V involved in transferring the second mannose in glycosylphosphatidylinositol. J. Biol. Chem. 280, 9489-9497 https://doi.org/10.1074/jbc.M413867200
  14. Kinoshita, T. and N. Inoue. 2000. Dissecting and manipulating the pathway for glycosylphos-phatidylinositol-anchor biosynthesis. Curr. Opin. Chem. Biol. 4, 632-638 https://doi.org/10.1016/S1367-5931(00)00151-4
  15. Maeda, Y., S. Tomita, R. Watanabe, K. Ohishi, and T. Kinoshita. 1998. DPM2 regulates biosynthesis of dolichol phosphatemannose in mammalian cells: correct subcellular localization and stabilization of DPM1, and binding of dolichol phosphate. EMBO J. 17, 4920-4929 https://doi.org/10.1093/emboj/17.17.4920
  16. Maeda, Y., S. Tanaka, J. Hino, K. Kangawa, and T. Kinoshita. 2000. Human dolichol-phosphate-mannose synthase consists of three subunits, DPM1, DPM2 and DPM3. EMBO J. 19, 2475-2482 https://doi.org/10.1093/emboj/19.11.2475
  17. Murakami, Y., U. Siripanyapinyo, Y. Hong, J.Y. Kang, S. Ishihara, H. Nakakuma, Y. Maeda, and T. Kinoshita. 2003. PIG-W is critical for inositol acylation but not for flipping of glycosylphosphatidylinositol-anchor. Mol. Biol. Cell. 14, 4285-4295 https://doi.org/10.1091/mbc.E03-03-0193
  18. Nagamune, K., T. Nozaki, Y. Maeda, K. Ohishi, T. Fukuma, T. Hara, R.T. Schwarz, C. Sutterlin, R. Brun, H. Riezman, and T. Kinoshita. 2000. Critical roles of glycosylphosphatidylinositol for Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 97, 10336-10341
  19. Nakamura, N., N. Inoue, R. Watanabe, M. Takahashi, J. Takeda, V.L. Stevens, and T. Kinoshita. 1997. Expression cloning of PIG-L, a candidate N-acetylglucosaminyl-phosphatidylinositol deacetylase. J. Biol. Chem. 272, 15834-15840 https://doi.org/10.1074/jbc.272.25.15834
  20. Parker, M.W., J.T. Buckley, J.P. Postma, A.D. Tucker, K. Leonard, F. Pattus, and D. Tsernoglou. 1994. Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature 367, 292-295 https://doi.org/10.1038/367292a0
  21. Quinn, C.P., Y. Singh, K.R. Klimpel, and S.H. Leppla. 1991. Functional mapping of anthrax toxin lethal factor by in-frame insertion mutagenesis. J. Biol. Chem. 266, 20124-20130
  22. Sellman, B.R. and R.K. Tweten. 1997. The propeptide of Clostridium septicum alpha toxins functions as an intramolecular chaperone and is a potent inhibitor of alpha toxins-dependent cytolysis. Mol. Microbiol. 25, 429-440 https://doi.org/10.1046/j.1365-2958.1997.4541820.x
  23. Shin, D.-J., J.J. Lee, H.E. Choy, and Y. Hong. 2004. Generation and characterization of Clostridium septicum alpha toxins mutants and their use in diagnosing paroxysmal nocturnal hemoglobinuria. Biochem. Biophys. Res. Commun. 324, 753-760 https://doi.org/10.1016/j.bbrc.2004.09.104
  24. Sousa, M.V., M. Richardson, W. Fontes, and L. Morhy. 1994. Homology between the seed cytolysin enterolobin and bacterial aerolysins. J. Protein Chem. 13, 659-667 https://doi.org/10.1007/BF01886950
  25. Takeda, J., T. Miyata, K. Kawagoe, Y. Iida, Y. Endo, T. Fujita, M. Takahashi, T. Kitani, and T. Kinoshita. 1993. Deficiency of the GPI-anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 73, 703-711 https://doi.org/10.1016/0092-8674(93)90250-T
  26. Tarutani, M., S. Itami, M. Okabe, M. Ikawa, T. Tezuka, K. Yoshikawa, T. Kinoshita, and J. Takeda. 1997. Tissue-specific knockout of the mouse Pig-a gene reveals important roles for GPI-anchored proteins in skin development. Proc. Natl. Acad. Sci. USA 94, 7400-7405
  27. van der Goot, F.G., K.R. Hardie, M.W. Parker, and J.T. Buckley. 1994. The C-terminal peptide produced upon proteolytic activation of the cytolytic toxin aerolysin is not involved in channel formation. J. Biol. Chem. 269, 30496-30501
  28. Ware, F.E. and M.A. Lehrman. 1998. Expression cloning of a novel suppressor of the Lec15 and Lec35 glycosylation mutations of Chinese hamster ovary cells. J. Biol. Chem. 273, 13366