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When aligning catoptric or catadioptric telescopes for space cameras, it is difficult to align
precisely if the field of view is large or there are several reflective surfaces. The quantitative
knowledge of mirror misalignments greatly helps align a misaligned telescope precisely, and also
reduce the alignment time. This paper describes a generalized reverse-optimization alignment
solution algorithm using Zernike sensitivity, and proposes the minimum number of fields to take
interferograms. This method was successfully applied on a Cassegrain telescope design for Earth
observation from space with arbitrary misalignments and a model including some primary mirror

deformation.

OCIS codes : 220.1140, 110.6770, 350.6090

I. INTRODUCTION

Space telescopes often use catoptric or catadioptric
design such as a Cassegrain-variant due to the advan-
tages in the size and mass. A Cassegrain telescope can
be aligned by inspecting the interferograms from the
double-pass setup in the laboratory. When the Cass-
egrain telescope has relatively small field of view (e.g.

¢+4/-0.1 deg), it can be aligned easily by using the
on-axis interferogram. For example, a 450 mm diame-
ter Cassegrain collimator [1] with +/-0.09 deg field of
view was reported to be easily aligned by inspecting
the on-axis interferogram only. However, it becomes
more difficult when the field of view is relatively large.
This was observed while aligning a +/-1 deg field of
view Cassegrain-variant telescope[2]. Even though the
on-axis interferogram showed sufficiently low RMS
wavefront error (WFE), the RMS WFEs of the opposite
off-axis fields were unacceptably unbalanced. The
reverse-optimization function (ALI) in Code V had been
used to calculate the as-is misalignment parameters to
solve this problem. This paper describes a similar reverse-
optimization algorithm independently, by using the
Zernike sensitivities on misalignments. Understanding
of this algorithm can help determine the minimum
number of interferograms needed for the reverse-optim-
ization alignment for more general cases. The algorithm

was successfully applied for a Cassegrain- variant, and
the range of misalignments for accurate alignment
solution is also discussed.

II. ZERNIKE SENSITIVITY OF MISALIGNMENT
PARAMETERS

RMS WFE or modulation transfer function (MTF)
are usually used for calculating sensitivity tables in
commercial optics design softwares. However, Zernike
sensitivity analysis is known to be useful in determi-
ning the alighment compensators and setting up an
optimized alignment logic of an optical system [3]. Unl-
ike MTF sensitivities, low-order Zernike coefficients
obtained from the wavefront at the exit pupil of a
telescope are usually linearly varying to misalignments
if the ranges of the misalignments are sufficiently
small. Fig. 1 shows typical MTF profiles versus varying
misalignment parameters of a Cassegrain-variant tele-
scope. The secondary mirror is despaced or tilted, and
the MTF response is not linear to the misalignments
over the typical ranges of misalignments. On the con-
trary, Zernike sensitivities on misalignments are appro-
ximately linear over the same misalignment ranges.

There are various kinds of Zernike polynomials de-
pending on the expansion order and the shape of the
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TABLE 1. Low-order Fringe Zernike polynomial terms.
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FIG. 1. MTF sensitivity of a Cassegrain telescope.

area over which the polynomials are defined. Standard
Zernike polynomials were used in [3], but Fringe Zer-
nike polynomials as shown in Table 1 [4] were used for
this paper. Fringe Zernike polynomials were preferred
because the key low-order Zernike terms related to the
alignment are expressed in a series unlike in the stand-
ard Zernike polynomials. Fringe Zernike coefficients are
also often the only option for commercial interfero-
meters.

Zernike sensitivity analysis can also be used to rever-
sely calculate unknown misalignments. For a Cassegrain-
variant like the Medium-sized Aperture Camera (MAC)
[5] (Fig. 2), an earth observation camera for small
satellites, the Zernike sensitivities of the key compo-
nents can be plotted as in Fig. 3. The secondary mirror
(M2) and correction lens barrel (CLB) were used to
generate misalignments. The fringe Zernike coefficients
from Z to Z (defocus to SA3) were plotted, as Z
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FIG. 2. Alignment compensators for MAC.

to Z, (piston to tilt) are irrelevant to the image quality.
Conspicuous linearity is shown within the misalignment
range. The translational misalignment error range was
+/-0.1 mm, and the rotational misalignment error
range was +/-0.06 deg (~1000 prad). It was evident
that the secondary mirror is more sensitive than the
correction lens barrel per same misalignment range,
and hence five alignment compensators - despace,
X/Y-tilts, tilts around X/Y axes - on the secondary
mirror were used.

0. REVERSE-OPTIMIZATION ALGORITHM

With the Zernike sensitivities and the Zernike coeff-
icients taken from a misaligned telescope, we can rever-
sely calculate the misalignment parameters. The slope
of each straight line in Fig. 3 is the Zernike sensitivity
on the misalignment parameter. As the Zernike coeffic-
ients are linear to misalignments, each Zernike coeffici-
ent extracted from the misaligned telescope can be
expressed as a linear combination of different misalign-
ment parameters with relevant Zernike sensitivities. At
m th field, n th fringe Zernike coefficient ™Z, can be
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FIG. 3. Zernike sensitivities on misalignment parameters of a Cassegrain-variant telescope.

expressed as follows.

d(mZn)
dz; }Azi

”LZTL = mcﬂ + Z

The' constant ™c, is the Zernike coefficient of the

13

perfectly aligned telescope from the design, when all

is the Zernike sensitivity on the

Z,
Az, are zeros. s
misalignment parameter z,, where it can be despace,
X/Y decenter, and tilt around X/Y.

With i number of unknowns (misalignment parame-
ters), we can solve the simultaneous equations for the
unknowns provided there are minimum ¢ number of
unique equations. Table 2 shows the Zernike sensiti-
vities of the Cassegrain-variant of Fig. 2 at on-axis
(field 1) and off-axis (field 2) fields. Equations as above

can be set up for different Zernike coefficients. However,

for the field 1, some sensitivities are virtually zeros and
there rémain only four equations for Z, %, Z, and Z.
As there are five unknowns, at least five equations are
needed to solve for the five unknowns. Table 2 also
shows the Zernike sensitivities for the field 2, which
gives six unique equations for Z,, Z,, Z, Z;,, Z and Z,.
With any five from the six equations can be used to
solve for the five unknown misalignment errors.
Table 3 shows an alignment solution example. When
the secondary mirror was arbitrarily decentered, desp-
aced, and tilted as in Table 3, one can solve for the
unknown misalignment errors by solving pertinent five
Zernike coefficient equations from field 2 only. (7, Z,
Z,, Z; and Z, were used for this example.) It should
be noticed that the 1st alignment solution does not
give perfect solution but leaves some residual error.
The residual error is removed extremely well at an
iterated (2nd) alignment solution. This is because the
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TABLE 2. Zernike sensitivities on misalignment parameters of M2 (in wv/mm or wv/deg).
Field 1 on-axis (0.0, 0.0)
73 74 Z5 76 7 78
M2 | X-Dec 0.lmm 2.16E—09 | —7.35E—12 | —5.85E—11 | —1.89E+00 | —9.99E—11 | —2.67TE—09
Y-Dec 0.1mm 218E—09 | —2.95E—11 | —=5.85E—11 | —9.99E—~11 | —1.89E+00 | —2.67E—09
Z-Des 0.1mm —2.37TE+01 7.87TE—15 | —2.80E—11 | —1.77E—~10 | —1.77E-10 1.60E—01
Tilt around X 0.06deg | —3.01E—09 4.59E—11 | —9.94E—11 1.19E—12 3.94E+00 3.33E—09
Tilt around Y 0.06deg 2.51E—09 | ~4.85E—-10 9.94E—-11 | —3.94E+00 | —1.19E—12 | —3.59E—-09
Field 2 off-axis (1.0, 0.0)
73 74 75 76 Z7 78
M2 | X-Dec 0.lmm —437E-01 7.48E—03 3.88E—11| —1.90E+00; —5.74E—10| —9.90E—04
Y-Dec 0.1mm 1.91E—-09 | —6.3TE—11| —743E—03 2.55E—-10| —1.90E+00| —2.37TE—09
Z-Des 0.1mm —2.38E+01 | —3.65E—02 5.96E—12 | —1.46E—-01 1.94E—-10 1.60E—01
Tilt around X 0.06deg | —8.41E—09 3.11E-10| —6.6TE+00 | —4.76E—10 3.93E+00 1.01E—08
Tilt around Y 0.06deg 2.19E+00 6.83E+00| —1.93E—11 | —3.87TE+00 | —2.35E-10| —1.61E—03
TABLE 3. Reverse-optimization alignment solution to arbitrary misalignments.
M2 Misalignment 1" Alignment (mm, deg) 2" Alignment (mm, deg)

Type mm, deg Solution Error Solution Frror
X-Decenter 0.1 0.1027 0.0027 0.0027 6.07E-18
Y-Decenter —-0.1 —0.0865 0.0135 0.0135 0

Z-Despace 0.1 0.1009 0.0009 0.0009 1.95E-18
Tilt around X —-0.1 —0.093 0.007 0.007 0
Tilt around Y 0.1 0.0982 —0.0018 -0.0018 9.97E-18

Zernike coefficient to misalignment parameter may not
be sufficiently linear or one or more misalignment para-
meters may be coupled to one another. Fig. 4 shows
a Zernike sensitivity to secondary mirror tilt with larger
misalignment range, and non-linearity can be seen
more clearly. We can determine approximately how
much misalignment we can reversely calculate. In order
to accurately calculate the unknown misalignment, the
error needs to be within sufficiently linear range. The
example in Table 3 gives practically accurate alignment
solution at the Ist run, but the number of reverse-
optimization run should be determined by the RMS
WFE requirement after the alignment. The alignment
solution is also limited by the alignment tool (e.g.
micrometer) resolution.

In real alignment situations, the mounted mirrors of
the telescope are not as ideal as in the design, but often
deformed during the assembly procedure and/or due to
the gravity. With a deformed mirror, the Zernike sen-
sitivity would not be as the same as an ideal case, and
the measured wavefront and hence the Zernike coeffi-
cients would also be different. Another calculation was

carried out to check whether this reverse-optimization
algorithm can be used for a Cassegrain-variant teles-
cope with some deformation on the primary mirror.
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FIG. 4. Non-linearity example of Zernike sensitivity
for a wider misalignment range.
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TABLE 4. Zernike sensitivities with M1 deformation (in wv/mm or wv/deg).

Field 2 off-axis (1.0, 0.0)

Z3 Z4 Z5 Z6 z7 78
M2 X-Dec 0.1mm —4.37E-01 7.49E-03 1.00E—05 | —1.90E+00 440E—-05 | —1L31E—-03
Y-Dec 0.1lmm 5.40E-05 —4.60E-05 | —7.42E—-03 | —3.30E—05 | —1.90E+00 | —9.00E—06
Z-Des 0.1mm —2.38E+01 | —3.65E—02 3.10E—05 | —1.46E-01 1.26E-04 1.61E~01
Tilt around X 0.06deg| — 1.54E—03 1.68E—03 | —6.67E+00 6.60E— 05 3.93E+00 | —1.89E—-03
Tilt around Y 0.06deg 2.20E+00 | . 6.84E+00 247E—-03 | —3.86E+00 3.53E—-03 | —2.14E—-02

TABLE 5. Reverse-optimization alignment solution to arbitrary misalignments with M1 deformation.

M2 Misalignment 1* Alignment (mm, deg) 2nd Alignment (mm, deg)
Type mm, .deg F2 Error F2 Error
X-Decenter 0.1 0.1028 0.0028 0.0028 0
Y-Decenter -0.1 —0.0863 0.0137 0.0137 0
Z-Despace 0.1 0.1009 0.0009 0.0009 1.95E—-18 .
Tilt around X —0.1 —0.093 0.007 0.007 0
Tilt around Y 0.1 0.0982 —0.0018 —(.0018 9.97TE— 18

Fig. 5 shows a primary mirror deformation example
occurred by mounting. The interferogram file from the
deformed primary mirror was inserted on the primary
mirror of the design to calculate the Zernike sensitivity
with the primary mirror deformation. The Zernike
sensitivities from the telescope with the deformed
primary mirror are shown in Table 4. Some arbitrary
misalignments were given to the telescope with the
primary mirror deformation, and the as-is Zernike
coefficients were extracted. The simultaneous equations
were solved similarly, and the alignment solution was
still very accurate. The alignment solution with the
primary mirror deformation included is shown in Table
5. Other manufacturing error such as the radii of
curvature and conic constants was also considered
before calculating the sensitivities by including the
measured values supplied by the mirror manufacturer.

The reverse-optimization algorithm can be also useful
for a system with more alignment degrees of freedom
such as a three-mirror anastigmat (TMA) camera for
hyperspectral imaging applications[6]. Once the number
of alignment compensators is determined as above, the
amount of misalignments can be calculated as long as
the Zernike coefficients are linearly varying to the
misalignments likewise. When there are i number of
alignment compensators (unkowns), the m number of
needed fields, from which the interferograms are taken
can be expressed as 6m < :. However, it should be
noticed that the number of non-zero unique Zernike

sensitivity equations should also be greater than or
equal to, and this is why field 2 was chosen rather than
field 1 in the case of Cassegrain-variant telescope
above. For example, when there are seven alignment
compensators for a TMA telescope, minimum two
fields are needed to take interferograms. In general, the
unknown misalignments can be solved by solving the
matrix equation as follows including the case when
there are more equations than the number of unknown
misalignments. For such an overdetermined system,
the matrix equation can be solved by the least squares
fitting method.
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FIG. 5. Primary mirror deformation after the mounting.
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IV. CONSLUSION

A generalized reverse-optimization algorithm using
Zernike sensitivity was reviewed and the minimum
number of fields to take the interferograms was pro-
posed. The proposed minimum number of fields and
pertinent selection of the field can save time in meas-
uring the interferograms at different fields of view. The
algorithm was applied to a Cassegrain-variant telescope
design with arbitrary misalignments on the secondary
mirror, and to the same telescope with some primary
mirror deformation due to mounting. It was shown

that the proposed algorithm was sufficiently robust to
caléulate the alignment solutions very accurately for
both cases. This method can be applied to more compli-
cated system such as a TMA system, and is to be
explored further in future alignment experiments.

* Corresponding author : edk@satreci.com
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