DOI QR코드

DOI QR Code

최대 광밴드갭을 위한 2차원 광결정 구조

Polarization-Independent 2-Dimensional Photonic Crystal Structure for Maximum Bandgap

  • 성준호 (인하대학교 정보통신공학부) ;
  • 오범환 (인하대학교 정보통신공학부) ;
  • 이승걸 (인하대학교 정보통신공학부) ;
  • 박세근 (인하대학교 정보통신공학부) ;
  • 이일항 (인하대학교 정보통신공학부)
  • Sung, Jun-Ho (Optics and Photonics Ellite Research Academy (OPERA), School of Information & Communication Engineering, INHA University) ;
  • O, Beom-Hoan (Optics and Photonics Ellite Research Academy (OPERA), School of Information & Communication Engineering, INHA University) ;
  • Lee, Seung-Gol (Optics and Photonics Ellite Research Academy (OPERA), School of Information & Communication Engineering, INHA University) ;
  • Park, Se-Geun (Optics and Photonics Ellite Research Academy (OPERA), School of Information & Communication Engineering, INHA University) ;
  • Lee, El-Hang (Optics and Photonics Ellite Research Academy (OPERA), School of Information & Communication Engineering, INHA University)
  • 발행 : 2005.06.01

초록

광자결정의 밴드갭이 크면서도 모든 편광방향에 대해 동일하게 설계될 수 있다면, 이러한 광밴드갭은 다양한 소자의 응용에 있어 보다 유용해 질 수 있다. 현재까지는 원형의 공기구멍으로 이루어진 삼각격자 구조가 가장 큰 광밴드갭을 갖는 것으로 알려져 왔으나, 본 논문에서는 각종 구조적 변화에 의한 밴드갭의 변화경향을 분석하고 체계화함에 따라, 모든 편광방향에 대해 광밴드갭이 동일하면서 가장 크게 되는 새로운 격자구조를 제안하였다. 이 구조의 광밴드갭 비율$(\Delta\omega/\omega)$은 기존의 삼각격자에 비해 약 $30\%$ 정도 증대된 것임을 확인하였다.

The large and polarization-independent photonic bandgap (PBG) is very useful to the application to various optical devices. Until present, it has been known that the PBG for a triangular lattice remains the largest both in the E- and H-polarized modes. However, we proposed a new structure with a larger polarization-independent PBG, by analyzing and systemizing the PBG opening trends as the structural changes. This optimal structure for maximum bandgap has more increased gap-midgap ratio $(\Delta\omega/\omega)$ of about $30\%$ than the triangular lattice.

키워드

참고문헌

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987) https://doi.org/10.1103/PhysRevLett.58.2059
  2. S. John, Phys. Rev. Lett. 58, 2486 (1987) https://doi.org/10.1103/PhysRevLett.58.2486
  3. O. Painter, R. K. Lee, AScherer, A Yariv, J. D. O'Brien, P. D. Dapkus, and J. Kim, Science 284, 1819 (1999) https://doi.org/10.1126/science.284.5421.1819
  4. J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, IEEE Photon. Technol. Lett. 12, 1295 (2000) https://doi.org/10.1109/68.883808
  5. N. Susa, Jpn. J. Appl. Phys., Part 1 39, 6288 (2000) https://doi.org/10.1143/JJAP.39.6288
  6. J. D. Joannopoulos, R. D. Meada, and J. N. Winn, Photonic Crystals; Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995) pp. 43-44
  7. W. D. Zhou, J. Sabarinathan, P. Bhattacharya, B. Kochman, E. W. Berg, P. -C. Yu, and S. W. Pang, IEEE J. Quantum Electron. 37, 1153 (2001) https://doi.org/10.1109/3.945320
  8. M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 (1991) https://doi.org/10.1103/PhysRevB.44.8565
  9. D. Cassagne, C. Jouanin, and D. Bertho, Phys. Rev. B 53, 7134 (1996) https://doi.org/10.1103/PhysRevB.53.7134
  10. J. B. Nielsen, T. Sondergaard, S. E. Barkou, A Bjarklev, J. Broeng, and M. B. Nielsen, Electron. Lett. 35, 1736 (1999) https://doi.org/10.1049/el:19991177
  11. C. M. Anderson and K. P. Giapis, Phys. Rev. Lett. 77, 2949 (1996) https://doi.org/10.1103/PhysRevLett.77.996
  12. X. Zhang, Z. -Q. Zhang, L. -M. Li, C. Jin, D. Zhang, B. Man, and B. Cheng, Phys. Rev. B 61, 1892 (2000) https://doi.org/10.1103/PhysRevB.61.1892
  13. P. R. Villeneuve and M. Piche, Phys. Rev. B 46, 4969 (1992) https://doi.org/10.1103/PhysRevB.46.4969
  14. M. Y. Chen and R. J. Yu, IEEE Photon. Technol. Lett. 16, 819 (2004) https://doi.org/10.1109/LPT.2004.823719
  15. N. Susa, J. Appl. Phys. 91, 3501 (2002) https://doi.org/10.1063/1.1450022
  16. M. Qiu and S. He, Phys. Rev. B 60, 10610 (1999) https://doi.org/10.1103/PhysRevB.60.10610
  17. X. -H. Wang, B. -Y. Gu, Z. -Y, Li, and G. -Z. Yang, Phys. Rev. B 60, 11417 (1999) https://doi.org/10.1103/PhysRevB.60.11417
  18. L. F. Marsal, T. Trifonov, A Rodriguez, J. Pallares, and R. Alcubilla, Physica E 16, 580 (2003) https://doi.org/10.1016/S1386-9477(02)00650-1
  19. J. D. Joannopoulos, R. D. Meada, and J. N. Winn, Photonic Crystals; Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995) pp. 63-65
  20. M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 (1991) https://doi.org/10.1103/PhysRevB.44.8565