DOI QR코드

DOI QR Code

Calculation of the Hubbard U Parameters by the Solid Atom Method

  • Youn, S.J. (Department of Physics Education and Research Institute of Natural Science, Gyeongsang National University)
  • Published : 2005.06.01

Abstract

An effective method, i.e., the solid atom method, is suggested to obtain the Coulomb interaction parameter, U, and the Hund exchange coupling constant, J, for use in the LDA+U calculation. The par~meters are obtained self-consistently during the LDA+U calculation. The method is applied to typical transition metal oxides and $MnB^{VI}(B^{VI}=S,Se,Te)$. The U values for the transition metal oxides have similar magnitude to previous calculations although they are obtained by a much simpler method. $MnB^{VI}s$ have been characterized as crossroads materials between charge transfer and band insulators by the LDA+U calculation.

Keywords

References

  1. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)
  2. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)
  3. K. Terakura, T. Oguch, A. R. Williams, and J. Kbler, Phys. Rev. B 30, 4734 (1984)
  4. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991)
  5. V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997)
  6. F. Aryasetiawan, Phys. Rev. B 46, 13051 (1992)
  7. V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin, and G. KotIier, J. Phys.: Condens. Matter 9, 7359 (1997)
  8. B. N. Cox, M. A. Coulthard, and P. Lloyd, J. Phys. F: Metal Phys. 4, 807 (1974)
  9. M. R. Norman and A. J. Freeman, Phys. Rev. B 33, 8896 (1986) https://doi.org/10.1103/PhysRevA.33.986
  10. I. V. Solovyev and M. Imada, Phys. Rev. B 71, 045103 (2005)
  11. E. Pickett, S. C. Erwin, and E. C. Ethridge, Phys. Rev. B 58, 1201 (1998)
  12. V. I. Anisimov and O. Gunnarsson, Phys. Rev. B 43, 7570 (1991)
  13. J. F. Janak, Phys. Rev. B 18, 7165 (1978)
  14. J. C. Slater, Quantum theory of Molecules and Solids (McGraw-Hill, New York, 1974)
  15. J.-S. Kang, J. H. Kim, S. W. Han, K. H. Kim, E. J. Choi, A. Sekiyama, S. Kasai, S. Suga, and T. Kimura, J. of Magnetcis 8(4), 142 (2003) https://doi.org/10.4283/JMAG.2003.8.4.142
  16. S. K. Kwon and B. I. Min, Phys. Rev. Lett. 84, 3970 (2000)
  17. S. J. Youn, B. I. Min, and A. J. Freeman, Phys. Stat. Sol. (b) 241, 1411 (2004)
  18. O. K. Andersen, Phys. Rev. B 12, 3060 (1975) https://doi.org/10.1103/PhysRevB.12.975
  19. Y.-R. Jang and B. I. Min, J. of Magnetcis 3(1), 1 (1998)
  20. A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995)
  21. U. von Barth and L. Hedin, J. Phys. C: Solid State Phys. 5, 1629 (1972)
  22. J. Rath and A. J. Freeman, Phys. Rev. B 11, 2109 (1975)
  23. V. I. Anisimov, I. S. Elfimov, N. Hamada, and K. Tera­kura, Phys. Rev. B 54, 4387 (1996)
  24. V. N. Antonov, B. N. Harmon, V. P. Antropov, A. Y. Perlov, and A. N. Yaresko, Phys. Rev. B 64, 134410 (2001)
  25. Note that Anisimov et al. (Ref. [20]) used the same U for both types of Fe in their calculation on $Fe_{3}O_{4}$
  26. J. W. Allen, G. Lucovsky, and J. C. Mikkelsen Jr, Solid State Commun 24, 367 (1977)
  27. S.-H. Wei and A. Zunger, Phys. Rev. B 35, 2340 (1987) https://doi.org/10.1103/PhysRevB.35.2340
  28. M. Podgrny, Z. Phys. B Cond. Matt. 69, 501 (1988)
  29. B. E. F. Fender, A. J. Jacobson, and F. A. Wedgwood, J. Chem. Phys. 48, 990 (1968)
  30. T. Ito, K. Ito, and M. Oka, Japan. J. Appl. Phys. 17, 371 (1978)
  31. N. Kunitomi, Y. Hamaguchi, and S. Anzai, J. Phys. (Paris), 25, 568 (1964)
  32. J. Zaanen, C. Westra, and G. A. Sawatzky, Phys. Rev. 33, 8060 (1986) https://doi.org/10.1103/PhysRevA.33.986

Cited by

  1. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects vol.4, pp.2, 2017, https://doi.org/10.1088/2053-1583/aa6bec
  2. Novel Chern insulators with half-metallic edge states vol.10, pp.2, 2018, https://doi.org/10.1038/am.2017.240
  3. Non-Dirac Chern insulators with large band gaps and spin-polarized edge states vol.10, pp.18, 2018, https://doi.org/10.1039/C8NR00201K