Zn-Ion Coated Structural $SiO_2$ Filled LDPE: Effects of Epoxy Resin Encapsulation

  • Reddy C. S. (Materials Science Centre, Indian Institute of Technology) ;
  • Das C. K. (Materials Science Centre, Indian Institute of Technology) ;
  • Agarwal K. (Defence Materials & Stores Research and Development establishment, (DMSRDE)) ;
  • Mathur G N. (Defence Materials & Stores Research and Development establishment, (DMSRDE))
  • Published : 2005.06.01

Abstract

In the present work, a low-density polyethylene (LDPE) composite, filled with Zn-ion coated structural silica encapsulated with the diglycidyl ether of bisphenol-A (DGEBA), was synthesized using the conventional melt-blending technique in a sigma internal mixer. The catalytic activity of the Zn-ions (originating from the structural silica) towards the oxirane group (diglycidyl ether of bisphenol-A (DGEBA): encapsulating agent) was assessed by infrared spectroscopy. Two composites, each with a filler content of $2.5 wt\%$ were developed. The first one was obtained by melt blending the Zn-ion coated structural silica with LDPE in a co-rotating sigma internal mixer. The second one was obtained by melt blending the same LDPE, but with DGEBA encapsulated Zn-ion coated structural silica. Epoxy resin encapsulation of the Zn-ion coated structural silica resulted in its having good interfacial adhesion and a homogeneous dispersion in the polymer matrix. Furthermore, the encapsulation of epoxy resin over the Zn-ion coated structural silica showed improvements in both the mechanical and thermal properties, viz. a $33\%$ increase in the elastic modulus and a rise in the onset degradation temperature from 355 to $371^{\circ}C$, in comparison to the Zn-ion coated structural silica.

Keywords

References

  1. B. M. Novak, Adv. Mater., 5, 422 (1993) https://doi.org/10.1002/adma.19930050603
  2. R. W. Hausslein and G. Fallick, J. Appl. Polym. Symp., 11, 119 (1969)
  3. J. Gahde, V. Muller, Y. V. Lebedev, and Y. S. Lipatov, Polym. Sci., USSR, 19, 1446 (1977) https://doi.org/10.1016/0032-3950(77)90254-4
  4. D. H. Solomon and M. J. Rosser, J. Appl. Polym. Sci., 9, 1261 (1965) https://doi.org/10.1002/app.1965.070090407
  5. C. Velasco-Santos, A. L. Martinez-Hernandez, M. LozadaCassou, A. Alvarez-Castillo, and V. M. Castano, Nanotechnolgy, 13, 495 (2002) https://doi.org/10.1088/0957-4484/13/4/311
  6. G. Carrot, D. Rutot-Houze, A. Pottier, P. Degee, J. Hilborn, and P. Dobois, Macromolecules, 35, 8400 (2002) https://doi.org/10.1021/ma020558m
  7. O. Urzua-Sanchez, A. Licea-Claverie, J. Gonzalez, L. Cota, and F. Castillon, Polym. Bull., 49, 39 (2002) https://doi.org/10.1007/s00289-002-0070-7
  8. J. Lin, J. A. Siddiqui, and R. M. Ottenbrite, Polym. Adv. Technol., 12, 285 (2001) https://doi.org/10.1002/1099-1581(200101/02)12:1/2<1::AID-PAT77>3.0.CO;2-S
  9. A. Ravve, Principles of Polymer Chemistry, 2nd Eds., Kluwer/ Plenum Publishers, New York, 2000
  10. N. G. Sahoo, C. K. Das, A. B. Panda, and P. Pramanik, Macromol. Res., 10, 6 (2002) https://doi.org/10.1007/BF03218332
  11. S. Ahmed and F. R Jones, J. Mater. Sci., 25, 4993 (1990)
  12. J. Jancar, A. Dainselmo, and A. T. Dibenedetto, Polym. Eng. Sci., 32, 1394 (1992) https://doi.org/10.1002/pen.760321809
  13. H. S. Katz and J. V. Milewski, Eds., Handbook of Fillers for Plastics, Van Nostrand Reinhold Publ., New York, 1987
  14. R. I. Gonzalez, S. H. Phillips, and G. B. Hoflund, J. Spacecr. Rockets, 37, 463 (2000) https://doi.org/10.2514/2.3606