T/A 변수를 이용한 표면근전도 간섭패턴의 정량적 해석에 관한 연구

A Study on the Quantitative Analysis of Surface EMG Interference Pattern with T/A Variables

  • 강원희 (서울시립대 전자전기컴퓨터공학부) ;
  • 김성환 (서울시립대 전자전기컴퓨터공학부) ;
  • 이진 (삼척대 컴퓨터제어계측공학과)
  • 발행 : 2005.05.01

초록

We have tried to analyze the SEMG interference pattern quantitatively and automatically using T/A variables ZC, TN, mSA, mSD, UCA, AIPEA, ACT and NSS. For the analysis, we have carried out experiments on 14 SEMG interference patterns recorded from the biceps brachii, first dorsal interosseus and abductor policis brevis muscles. Emphasis was placed on the following 3 points in the experiments. 1) Suitable amplitude threshold for the automatic detection of the T/A variables. 2) Variation of the T/A variables to varying $\%$MVC. 3) Variation of the T/A variables to the sustained contraction for 30 seconds. Results of the experiments showed that T/A analysis of the SEMG interference Pattern can be effective tools for diagnostic purposes instead of the conventional NEMG method.

키워드

참고문헌

  1. R. S. LeFever and C. J. De Luca, ' A procedure for decomposing the myoelectric signal into its constituent action potentials,' IEEE Trans. Biomed. Eng., vol. BME-29, pp. 149-153, 1982 https://doi.org/10.1109/TBME.1982.324881
  2. D. Zennaro, P. Wellig, V. M. Koch, G. S. Moschytz and T. Laubli, ' A software package for decomposition of long-term multichannel EMG signals using wavelet coefficients,' IEEE Trans. Biomed. Eng., vol. BME-50, pp. 58-69, 2003 https://doi.org/10.1109/TBME.2002.807321
  3. J. Finsterer, ' EMG-interference pattern analysis,' J. Electromyogr. Kinesiol., vol. 11, pp. 231-246, 2001 https://doi.org/10.1016/S1050-6411(01)00006-2
  4. R. G. Willison, ' Analysis of the electrical activity in healthy and dystrophic muscle in man,' J. Neurol. Neurosurg. Psychiatry, vol. 27, pp. 386-394, 1964 https://doi.org/10.1136/jnnp.27.5.386
  5. A. L. Rose and R. G. Willison, ' Quantitative electromyography using automatic analysis : studies in healty subjects and patients with primary muscle disease,' J. Neurol. Neurosurg. Psychiatry, vol. 30, pp. 403-410, 1967 https://doi.org/10.1136/jnnp.30.5.403
  6. M. Hayward and R. G. Willison, ' Automatic analysis of the electromyogram in patients with chronic partial denervation,' J. Neurol. Sci., vol. 33, pp. 415-423, 1977 https://doi.org/10.1016/0022-510X(77)90137-X
  7. E. V. Stalberg, J. Chu, V. Bril, S. D. Nandedkar, S. Stalberg, and M. Ericsson, ' Automatic analysis of the EMG interference pattern,' EEG Clin. Neurophysiol., vol. 56, pp. 672-681, 1983 https://doi.org/10.1016/0013-4694(83)90035-4
  8. S. D. Nandedkar, D. B. Sanders and E. V. Stalberg,' Simulation and analysis of the electromyographic interference pattern in normal muscle. Part I: Turns and amplitude measurements,' Muscle Nerve, vol. 9, pp. 423-430, 1986 https://doi.org/10.1002/mus.880090507
  9. S. D. Nandedkar, D. B. Sanders and E. V. Stalberg,' Automatic analysis of the EMG interference pattern. Part I: Development of quantitative features,' Muscle Nerve, vol. 9, pp. 431-439, 1986 https://doi.org/10.1002/mus.880090508
  10. S. D. Nandedkar, E. V. Stalberg and D. B. Sanders,' Simulation techniques in EMG,' IEEE Trans. Biomed. Eng., vol. BME-32, pp. 775-785, 1985 https://doi.org/10.1109/TBME.1985.325493
  11. D. B. Sanders, E. V. Stalberg and S. D. Nandedkar,' Analysis of the electromyographic interference pattern,' J. Clin. Neurophysiol., vol. 13, pp. 385-400, 1996 https://doi.org/10.1097/00004691-199609000-00003
  12. C. A. Luciano, and M. E. Dang,' Tum analysis with reduced detection thresholds in myopathy,' Muscle Nerve, vol. 16, pp. 1086-1087, 1993
  13. C. M. Thompson and L. Shure, Matlab and Simulink User's Guide, T Mathworks Inc., 2002
  14. J. V. Basmajian and C. J. De Luca, Muscles alive : Their functions revealed by electromyography., Baltimore, MD, Williams & Wilkins, 1985
  15. P. A. Kaplanis, C. S. Pattichis and C. V. Roberts,' Influence of isometric voluntary contraction on time and frequency domain parameters of surface EMG,' Proceedings of EMBS/BMES conf. in Houston TX. USA, Oct., pp. 23-26, 2002 https://doi.org/10.1109/IEMBS.2002.1053348
  16. H. Christensen and A. Fuglsang-Frederiksen,' Power spectrum and turns analysis of EMG at different voluntary efforts in normal subjects,' Electroencephalogr. Clin. Neurophysiol., vol. 64, pp. 528-535, 1986 https://doi.org/10.1016/0013-4694(86)90191-4
  17. A. Fuglsang-Frederiksen,' EMG-power spectrum, turns-amplitude analysis and motor unit potential duration in neuromuscular disorders,' J. Neurol. Sci., vol. 97, pp. 81-91, 1990 https://doi.org/10.1016/0022-510X(90)90100-2
  18. J. Finsterer and B. Mamoli,' Turn/amplitude parameter changes during sustained efforts,' Electroencephalogr. Clin. Neurophysiol., vol. 101, pp. 438-445, 1996