DOI QR코드

DOI QR Code

Pool Boiling Heat Transfer Characteristics of R-l34a in Titanium Horizontal Plain and Low Finned Tubes

티타늄 평활관 및 전열촉진관에서 R-l34a의 관외측 풀비등 열전달 특성에 대한 연구

  • 허재혁 (고려대학교 공학기술연구소) ;
  • 윤린 (고려대학교 공학기술연구소) ;
  • 정진택 (고려대학교 기계공학과) ;
  • 문영준 (고려대학교 기계공학과) ;
  • 김용찬 (고려대학교 기계공학과)
  • Published : 2005.07.01

Abstract

Pool boiling heat transfer characteristics of R-134a were investigated in titanium plain and low finned tubes. The diameter of test tube was 15.88 mm and the fin density was 33 fpi. Tests were conducted at saturation temperatures of $20^{\circ}C$ and $30^{\circ}C$. Heat fluxes varied from 5000 W/$m^2$ to 50,000 W/$m^2$ based on surface area of the plain tube. The pool boiling heat transfer coefficients of the titanium horizontal plain tube are lower than those of the copper plain tube by $8.2\%$. The boiling heat transfer coefficients of the low finned tube are averagely higher than those of the plain tubes by $34\%$. The average deviation of the Slipcevic correlation from the present data for the low finned tube is $20\%$.

Keywords

References

  1. Rohsenow, W. M., 1952, 'Method of Correlating Heat Transfer Data for Surface Boiling of Liquids,' Trans. ASME, Vol. 74, pp. 969-975
  2. Forster, H. K. and Zuber, N., 1955, 'Bubble Dynamics and Boiling Heat Transfer,' AIChE J., Vol. 2, p. 532
  3. Staphan, K. and Abdelsalam, M., 1980, 'Heat Transfer Correlations for Natural Convection Boiling,' Int. J. Heat Mass Transfer, Vol. 23, pp. 73-87 https://doi.org/10.1016/0017-9310(80)90140-4
  4. Cooper, M. G, 1984, 'Heat Flow Rates in Saturated Nucleat Pool Boiling-a Wide-Raging Examination Using Reduced Properties,' Advances in Heat Transfer Academic Press, Orlando, Vol. 16, pp. 157-239
  5. Gorenflo, D., Sokol, P. and Caplanis, S., 1990, 'Pool Boiling Heat Transfer from Single Plain Tubes to Various Hydrocarbons,' Int. J. Refrigeration, Vol. 13, pp. 286-292
  6. Webb, R. L. and Pain, C., 1992, 'Nucleate Pool Boiling Data for Five Refrigerants on Plain, Integralfin and Enhanced Tube Geometries,' Int. J. Heat and Mass Transfer, Vol. 35, No. 8, pp. 1893-1904 https://doi.org/10.1016/0017-9310(92)90192-U
  7. Jung, D., An, K. and Park, J., 2004, 'Nucleate Boiling Heat Transfer Coefficients of HCFC22, HFC134a, HFC125, and HFC32 on Various Enhanced Tubes,' Int. J. Refrigeration, Vol. 27, pp. 202-206 https://doi.org/10.1016/S0140-7007(03)00124-5
  8. Barthau, G. and Hahne, E., 2004, 'Experimental Study of Pool Boiling of R134a on a Stainless Steel Tube,' Int. J. Heat and Fluid Flow, Vol. 25, pp. 305-312 https://doi.org/10.1016/j.ijheatfluidflow.2003.11.009
  9. Berenson, P. J., 1962, 'Experiments on Pool-Boiling Heat Transfer,' Int. J. Heat and Mass transfer, Vol. 5, pp. 985-999 https://doi.org/10.1016/0017-9310(62)90079-0
  10. Moffat, R. J., 1985, 'Using Uncertainty Analysis in the Planning of an Experiment,' Journal of Fluids Engineering, Vol. 107, pp. 173-178 https://doi.org/10.1115/1.3242452
  11. Hubner, P. and Kunstler Wolfgang, 1997, 'Pool Boiling Heat Transfer at Finned Tube: Influence of Surface Roughness and Shape of the Fins,' Int. J. Refrigeration, Vol. 20, No. 8, pp. 575-582 https://doi.org/10.1016/S0140-7007(97)00033-9
  12. Slipcevic, 1992, 'Finned Tubes and Tubes with Artificial Nucleation Sites,' VDI Heat Atlas, VDI-Verlag, Dusseldorf, Germany, Ha 4-Ha-15