DOI QR코드

DOI QR Code

Kainate 유발 간질중첩증 모델에서 topiramate가 해마 신경세포사와 glutamate 수용체 발현에 미치는 영향

The Effect of Topiramate on Hippocampal Neuronal Death and Expression of Glutamate Receptor in Kainate-induced Status Epilepticus Model

  • 박민정 (동아대학교 의과대학 신경과학교실) ;
  • 하세운 (동아대학교 의과대학 생리학교실) ;
  • 배혜란 (동아대학교 의과대학 생리학교실) ;
  • 김상호 (동아대학교 의과대학 신경과학교실)
  • Park Min-Jeong (Department of Neurology and Dong-A University College of Medicine) ;
  • Ha Se-Un (Department of Physiology, Dong-A University College of Medicine) ;
  • Bae Hae-Rahn (Department of Physiology, Dong-A University College of Medicine) ;
  • Kim Sang-Ho (Department of Neurology and Dong-A University College of Medicine)
  • 발행 : 2005.06.01

초록

신경흥분독성과 간질발작발현은 glutamate 수용체활성과 연관이 있다고 알려져 있다. a-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA), kainate 수용체에 대한 glutamate 활성을 포함하는 다양한 기전을 가진 항전간제인 Topiramate는 신경보호작용을 가진다는 증거가 제시되어 Topiramate가 간질발작 후 해마의 glutamate 수용체 발현에 미치는 효과를 관찰하였다. 흰쥐에 kainate를 복강 내 주사하여 간질중첩증을 유발시킨 후 Topiramate를 1주일 주사하였다 Apop tag in situ detection kit를 이용하여 세포손상을 관찰한 결과 kainate 유발 간질중첩증 1주일 후 해마의 CA1, CA3에서 심각한 세포사를 보였으나, Topiramte 처리 군에서는 세포사가 현저히 감소하였다. 간질중첩증 이후 NMDA 수용체 아형 1,2a, 2b 발현이 현저히 증가했으나 Topiramate 처치에 의해 NMDA수용체의 발현에는 뚜렷한 변화가 없었다. AMPA수용체에서는 GluR1이 간질중첩증 이후 현저히 상향 조정되었고 GluR2는 현저히 하향조정 되었다 Topiramate 1주일 처리 시 간질중첩증으로 인해 변화된 CluR1과 GluR2의 발현이 역전되었다. 결론적으로 Topiramate는 간질중침증에 의한 CluR1/CluR2 발현비의 증가로 유발되는 흥분성 신경세포사를 억제시킴으로써 신경보호작용이 있는 것으로 보인다.

Excitotoxicity and epileptogenesis have often been associated with glutamate receptor activation. Accumulating evidences indicates that topiramate (TPM), an antiepileptic drug with multiple mechanisms of action has neuroprotective activity. We explored the neuroprotective effect of TPM on the status epilepticus (SE)-induced hippocampal neuronal death. After development of SE by kainite injection (15 mg/Kg), rats were treated with TPM (10mg/kg) for 1 week. The neuronal death was detected by Apop tag in situ detection kit, and the expression levels of glutamate receptors were semi-quantitatively analyzed by immunoblot. Kainate-induced SE caused a significant neuronal death and cell loss in CAI and CA3 regions of hippocampus at 1 week. However, treatment of TPM for 1 week after SE markedly reduced hippocampal neuronal death. The expression of N-methyl-D-aspartate (NMDA) receptor subunit 1, was increased by SE, but was not affected by 1 week treatment of TPM. The expressions of NMDA receptor subunit 2a and 2b were not changed by either SE or TPM. As for ${\alpha}-amino-3-hydroxy-5-methyl-4-isoxazole-propionate$ (AMPA) glutamate receptors (GluR), kainate-induced SE markedly up-regulated GluR1 expression but down-regulated GluR2 expression, leading to increased formation of $Ca^{2+}$ permeable GluR2- lacking AMPA receptors. TPM administration for 1 week attenuated SE-induced expression of both the up-regulation of GluR1 and down-regulation of GluR2, reversing the ratio of GluR1/GluR2 to the control value. In conclusion, TPM protects neuronal cell death against glutamate induced excitotoxicity in kainate-induced SE model, supporting the potential of TPM as a neuroprotective agent.

키워드

참고문헌

  1. Amano, K., K. Hamada, K. Yagi and K. Seino. 1998. Antiepileptic effects of topiramate on amygdaloid kindling in rats. Epilepsy Res. 31, 123-128 https://doi.org/10.1016/S0920-1211(98)00021-7
  2. Babb, T. L., W. R. Kupfer, J. K. Pretorius, P. H. Crandall and M. F. Levesque. 1991. Synaptic reorganization by mossy fibers in human epileptic fascia dentate. Neurosci. 42, 351-363 https://doi.org/10.1016/0306-4522(91)90380-7
  3. Ben-Ari, Y. 1985. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neurosci. 14, 375-403 https://doi.org/10.1016/0306-4522(85)90299-4
  4. Bittigau, P. and C. lkonomidou. 1997. Glutamate in neurologic diseases. J. Child. Neurol. 12, 471-485 https://doi.org/10.1177/088307389701200802
  5. Bliss, T. V. and G. L. Collingridge. 1993. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31-39 https://doi.org/10.1038/361031a0
  6. Brandt, C., H. Potschka, W. Loscher and U. Ebert. 2003. NMDA receptor blockade after status epilepticus protects against limbic brain damage but not against epilepsy in the kainate model of temporal lobe epilepsy. Neurosci. 118, 727-740 https://doi.org/10.1016/S0306-4522(03)00027-7
  7. Cavalheiro, E. A., D. A. Riche and G. Le Gal La Salle. 1982. Long-term effects of intrahippocampal kainic acid injection in rats: a method for inducing spontaneous recurrent seizure. Electroencepha Clin. Neurophysiol. 53, 581-589 https://doi.org/10.1016/0013-4694(82)90134-1
  8. Cha, B. H., D. C. Silveira, X. Liu, Y. Hu and G. L. Holmes. 2002. Effect of topiramate following recurrent and prolonged seizure during early development. Epilepsy Res. 51, 217-232 https://doi.org/10.1016/S0920-1211(02)00157-2
  9. Choi, D. W. 1987. Ionic dependence of glutamate neurotoxicity. J. Neurosci. 7, 369-379
  10. Choi, D. W. 1988. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 11, 465-469 https://doi.org/10.1016/0166-2236(88)90200-7
  11. Choi, D. W. 1988. Glutamate neurotoxocity and desease of the nervous system. Neuron 1, 623-634 https://doi.org/10.1016/0896-6273(88)90162-6
  12. Chum, S. S., D. Limbrick, S. Sombati and R. J. DeLorenzo. 1995. Excitotoxic activation of the NMDA receptor results in inhibition of calcium/calmodulin kinase II activity in cultured hippocampal neuron. J. Neurosci. 15, 3200-3214
  13. Coan, E. G., W. Saywood and G. L. Colligridge. 1987. MK801 blocks NMDA receptor mediated synaptic transmission and long term potentiation in rat hippocampal slices. Neurosci. 80, 111-114 https://doi.org/10.1016/0304-3940(87)90505-2
  14. Covolan, L. and J. E. Mello. 2000. Temporal profile of neuronal injury following pilocarpine or kainic acid-in-duced status epilepticus. Epilepsy Res. 39, 133-152 https://doi.org/10.1016/S0920-1211(99)00119-9
  15. DeLorenzo, R. J., S. Sombati and D. A. Coulter. 2000. Effects of topiramate on sustained repetitive firing and spontaneous recurrent seizure discharges in cultured hippocampal neurons. Epilepsia 41(Suppl 1), 540-544
  16. Dodgson, S. J., R. P. Shank and B. E. Maryanoff. 2000. Topiramate as an inhibitor of carbonic anhydrase isoenzymes. Epilepsia 41(Suppl 1), 535-S39
  17. Edmonds, H. J. Jr., Y. D. Jiang, R. Y. Zhang and R. Shank. 2001. Topiramate as a neuroprotectant in a rat model of global ischemia-induced neurodegeneration. Life Sci. 69, 2265-2277 https://doi.org/10.1016/S0024-3205(01)01306-6
  18. Frank, J. 1995. Unchanged balance between levels of mRNA encoding AMP A glutamate receptor subtypes following global cerebral ischemia in the rat. Acta. Neurol. Scand. 92, 337-343 https://doi.org/10.1111/j.1600-0404.1995.tb00139.x
  19. Gibbs, J. W. 3rd., S. Sombati, R. J. DeLorenzo and D. A. Coulter. 2000. Cellular actions of topiramate: blockade of kainate-evoked inward currents in cultured hippocampal neuron. Epilepsia 41(Suppl 1), 510-516 https://doi.org/10.1111/j.1528-1157.2000.tb00203.x
  20. Gilbert, M. E. 1991. Potentiation of inhibition with perforant path kindling: an NMDA-receptor dependent process. Brain Res. 564, 109-116 https://doi.org/10.1016/0006-8993(91)91359-9
  21. Herrero, A. J., N. Del Olmo, J. R. Gonzalez-Escalada and J. M. Solis. 2002. Two new actions of topiramate: inhibition of depolarizing GABAA-mediated responses and activation of a potassium conductance. Neuropharmacology 42, 210-220 https://doi.org/10.1016/S0028-3908(01)00171-X
  22. Higuchi, M., F. N. Single, M. Kohler, B. Sommer, R. Spregel and P. H. Seeburg. RNA editing of AMP A receptor subunit GluR-B: a base-paired intron-exon structure determines posiion and efficiency. Cell 75, 1361-1370 https://doi.org/10.1016/0092-8674(93)90622-W
  23. lsokawa, M. and J. E. Mello. 1991. NMDA receptor-mediated excitability in dendritically deformed dentate granule cells in pilocarpine-treated rats. Neurosci. 129, 69-73 https://doi.org/10.1016/0304-3940(91)90722-6
  24. Jahromi, S. S., M. R. Pelletier, P. J. McDonald, H. Khosravani and P. J. Carlen. 2000. Antiepileptic efficacy of topiramate: assessment in two in vitro seizure models. Brain Res. 872, 20-28 https://doi.org/10.1016/S0006-8993(00)02410-0
  25. Jonas, P. and N. Burnashev. 1995. Molecular mechanisms controlling calcium entry through AMP A-type glutamate receptor channels. Neuron 15, 987-990 https://doi.org/10.1016/0896-6273(95)90087-X
  26. Katzir, H., D. Mendoza and G. W. Mathern. 2000. Effect of theophylline and trimethobenzamide when given during kainate-induced status epilepticus: an improved histopathologic rat model of human hippocampal sclerosis. Epilepsia 41, 1390-1399 https://doi.org/10.1111/j.1528-1157.2000.tb00114.x
  27. Leite, J. P., Z. A. Bortolotto and E. A. Cavalheiro. 1990. Spontaneous recurrent seizures in rats: an experimental model of partial epilepsy. Neurosci. Biobehav. Rev. 14, 511-517 https://doi.org/10.1016/S0149-7634(05)80076-4
  28. Lissin, D. V., R. C. Carroll, R. A. Nicoll, R. C. Malenka and M. von Zastrow. 1993. Rapid, activation-induced redistribution of ionotropic glutamate receptor in cultured hippocampal neurons. Proc. Natl. A cad. Sci. 19, 1263-1272
  29. Loscher, W. 2002. Animal models of epilepsy for the development of antiepileptogenic disease-modifying drugs. A comparison of the pharmacology of kindling and poststatus epilepticus models of temporal lobe epilepsy. Epilepsy Res. 50, 105-123 https://doi.org/10.1016/S0920-1211(02)00073-6
  30. Lothman, E. W., E. H. Bertram, J. Kapur and J. L. Stringer. 1990. Recurrent spontaneous hippocampal seizure in the rat as a chronic sequel to limbic status epilepticus. Epilepsy Res. 6, 110-11 https://doi.org/10.1016/0920-1211(90)90085-A
  31. Malenka, R. C. and R. A Nicoll. 1993. NMDA-receptor dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci. 16, 521-527 https://doi.org/10.1016/0166-2236(93)90197-T
  32. Malinow, R, Z. F. Mainen and Y. Hayashi. 2000. LTP mechanisms: from silence to fourlane traffic. Curr. Opin. Neurobiol. 10, 352-357 https://doi.org/10.1016/S0959-4388(00)00099-4
  33. Mathern, G. W., T. J. Babb, J. K. Pretorius and J. P. Leite. 1995. Reactive synaptogenesis and neuron densities for neuropeptide Y, somatostatin, and glutamate decarboxylase immunoreactivity in the epileptogenic human fascia dentate. J. Neurosci. 15, 3990-4004
  34. Meldrum, B.S. 1986. Cell damage in epilepsy and the role of calcium in cytotoxicity. Adv. Neurol. 44, 849-855
  35. Meldrum, B. S. 1994. The role of glutamate in epilepsy and other CNS disorders. Neurology 44, 514-523
  36. Meldrum, B.S. 2000. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J. Nutr. 130, 51007-51015
  37. Mello, J. E., E. A. Cavalheiro, A. M. Tan, W. R. Kupfer, J. K. Pretorius, T. J. Babb and D. M. Finch. 1993. Circuit mechanisms of seizure in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. Epilepsia 34, 985-995 https://doi.org/10.1111/j.1528-1157.1993.tb02123.x
  38. Niebauer, M. and M. Gruenthal. 1999. Topiramate reduces neuronal injury after experimental status epilepticus. Brain Res. 837, 263-269 https://doi.org/10.1016/S0006-8993(99)01615-7
  39. Oguro, K. 1999. Knockdown of AMPA receptor GluR2 expression causes delayed neurodegeneration and increases damage by sublethal ischemia in hippocampal CA1 and CA3 neurons. J. Neurosci. 19, 9218-9227
  40. Pellegrini-Giampietro, D. E., R. S. Zukin, M. V. Bennett, S. Cho and W. A. PulsineIli. 1992. Switch in glutamate receptor subunit gene expression in CA1 subfield of hippocampus following global ischemia in rats. Proc. Natl. Acad. Sci. 89, 10499-10503
  41. Racine, R. J. 1972. Modification of seizure activity by electrical stimulation II. Motor seizure. Electroencephalogr Clin. Neurophysiol. 32, 281-294 https://doi.org/10.1016/0013-4694(72)90177-0
  42. Rice, A. C. and R. J. DeLorenzo. 1988. NMDA receptor activation during status epilepticus is required for the development of epilepsy. Brain Research 782, 240-247 https://doi.org/10.1016/S0006-8993(97)01285-7
  43. Rogawski, M. A., P. S. Kurzman, S. I. Yamaguchi and H. Li. 2001. Role of AMPA and GluR5 kainate receptors in the development and expression of amygdala kindling in the mouse. Neurophannacology 40, 28-35 https://doi.org/10.1016/S0028-3908(00)00112-X
  44. Rothman, S. M. 1983. Synaptic activity mediates death of hypoxic neurons. Science 220, 536-437 https://doi.org/10.1126/science.6836300
  45. Sattler, R. and M. Tymianski. 2001. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol. Neurobiol. 24, 107-129 https://doi.org/10.1385/MN:24:1-3:107
  46. Sattler, R. and M. Tymianski. 2000. Molecular mechanisms of calcium-dependent excitotoxicity. Mol. Med. 78, 3-13 https://doi.org/10.1007/s001090000077
  47. Scannevin, R. H. and R. L. Huganir. 2000. Post-synaptic organization and regulation of excitatory synapses. Nat. Rev. Neurosci. 1, 133-141 https://doi.org/10.1038/35039075
  48. Shank, R. P., J. F. Gardocki, A. J. Streeter and B. E. Maryanoff. 2000. An overview of the preclinical aspects of topiramate: pharmacology, pharmacokinetics, and mechanisms of action. Epilepsia 41(suppl 1), 53-59
  49. Simon, R. P., J. H. Swan, T. Griffiths and B. S. Meldrum. 1984. Blockade of NMDA receptor may protect against ischemic damage in the brain. Science 226, 850-852 https://doi.org/10.1126/science.6093256
  50. Skadski, S. and H. S. White. 2000. Topiramate blocks kainite-evoked cobalt influx into cultured neurons. Epilepsia 41(Suppl 1), 545-547
  51. Sommer, B., M. Kohler, R. Sprengel and P. H. Seeburg. 1991. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11-19 https://doi.org/10.1016/0092-8674(91)90568-J
  52. Susan, T. 2002. Herman Epilepsy after brain insult Targeting epileptogenesis. Neurology 59, 521- 526
  53. Tanaka, H., S. Y. Grooms, M. V. Bennett and R. S. Zukin. 2000. The AMPAR subunit GluR2: still front and centerstage. Brain Res. 886, 190-207 https://doi.org/10.1016/S0006-8993(00)02951-6
  54. Tauck, D. L. and J. V. Nadler. 1992. Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid treated rats. J. Neurosci. 5, 1016-1022
  55. Turski, W. A, E. A Cavalheiro, M. Schwarz, S. J. Czuczwar, Z. Kleinrok and L. Turski. 1983. Limbic seizures produced by pilocarpine in rats: behavioral, electroencephalographic and neuropathological study. Behav. Brain Res. 9, 315-335 https://doi.org/10.1016/0166-4328(83)90136-5
  56. Tuunanen, J., K. Lukasiuk, T. Halonen and A. Pitkanen. 1999. Status epilepticus induced neuronal damage in the rat amygdaloid complex: distribution, time-course and mechanisms. Neurosci. 94, 473-495 https://doi.org/10.1016/S0306-4522(99)00251-1
  57. White, H. S., S. D. Brown, J. H. Woodhead, G. A Skeen and H. H. Wolf. 2000. Topiramate modulates GABA-evoked currents in murine cortical neurons by a nonbenzodiazepine mechanisms. EpiIepsia 41(Suppl 1), 517-520
  58. William, R. 2000. Garnett Clinical pharmacology of topiramate: a review. Epilepsia 41(suppl 1), 561-565
  59. Ying, H. S. 1997. Sublethal oxygen glucose deprivation alters hippocampal neuronal AMP A receptor expression and vulnerability to kainate induced death. J. Neurosci. 17, 9536-9544
  60. Zhang, X., A. A. Velumian, O. T. Jones and P. J. Carlen. 2000. Modulation of high voltage-activated calcium channels in dentate granule cells by topiramate. EpiIepsia 41 (Suppl 1), 552-560