DOI QR코드

DOI QR Code

Activation of Phospholipase D2 through Phosphorylation of Tyrosine-470 in Antigen-stimulated Mast Cells

  • 발행 : 2005.06.01

초록

PLDI 활성화 기전은 여러 보고가 있으나 PLD2 활성화에 대한 기전은 아직 연구의 대상이다. RBL-2H3 비만세포에서 HA-PLD2의 인산화 가능한 타이로신 잔기를 점돌연변이 시킨 DNA플라즈미드를 이용하여 11번, 14번, 470번의 타이로신이 항원자극에 의해 인산화 됨을 알아냈고 특히 470번 타이로신의 인산화가 PLD2 활성화에 중요하다는 결과를 얻었다.

The mechanism of activation of phospholipase D2 (PLD2) remains undefined although mechanisms have been described for the activation of PLDI. By expression of mutated forms of haemaglutinnin-tagged PLD2 in a mast cell (RBL-2H3) line, we show that PLD2 is phosphorylated at tyrosines -11, -14, and -470 and that tyrosine-470 is critical for activation of PLD2 by antigen. Studies were performed with mutated-DNA constructs for haemaglutinnin-tagged PLD2 in which codons for tyrosine -11, -14, -165, and -470 were mutated to phenylalanine either individually or collectively. Transient expression of these constructs showed that mutation of tyrosine -11, -14, -470, or all tyrosines (all-mutated PLD2) suppressed antigen-induced tyrosine phosphorylation of PLD2 but only the tyrosine-470 mutant failed to be activated by antigen as assessed by in vitro assay of immunoprepitated PLD2 or by assay of PLD in intact cells. The critical role of tyrosine-470 was confirmed in studies with add-back mutants (phenylalanine back to tyrosine) of the all-mutated PLD. The findings provide the first description of a mechanism of activation of PLD2 in a physiological setting.

키워드

참고문헌

  1. Exton, J. H. 1997. Phospholipase D: enzymology, mechanisms of regulation, and function. Physiol. Rev. 77, 303-20
  2. Liscovitch, M., M. Czarny, G. Fiucd and X, Tang. 2000. Phospholipase D: molecular and cell biology of a novel gene family Biochem. J. 345, 401-15 https://doi.org/10.1042/0264-6021:3450401
  3. Jones, D., C. Morgan and S. Cockcroft. 1999. Phospholipase D and membrane traffic. Potential roles in regulated exocytosis, membrane delivery and vesicle budding. Biochim. Biophys. Acta. 1439, 229-44 https://doi.org/10.1016/S1388-1981(99)00097-9
  4. Morris, A. J., M. A. Frohman, and J. Engebrecht. 1997. Measurement of phospholipase D activity. Anal. Biochem. 252, 1-9 https://doi.org/10.1006/abio.1997.2299
  5. Hammond, S. M., J. M. Jenco, S. Nakashima, K. Cadwallader, Q.M. Gu, S. Cook, Y. Nozawa, G. D. Prestwich, M. A. Frohman and A. J. Morris. 1997. Characterization of two alternately spliced forms of phospholipase D1. Activation of the purified enzymes by phosphatidylinositol 4,5-bisphosphate, ADP-ribosylation factor, and Rho family monomeric GTP-binding proteins and protein kinase C-alpha. J. BioI. Chem. 272, 3860-8 https://doi.org/10.1074/jbc.272.6.3860
  6. Colley, W. C., T. C. Sung, R. Roll, J. Jenco, S. M. Hammond, Y. Altshuller, D. Bar-Sagi, A. J. Morris and M. A. Frohman 1997. Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr. BioI. 7, 191-201 https://doi.org/10.1016/S0960-9822(97)70090-3
  7. Park, S. K., J. J. Provost, C. D. Bae, W. T. Ho and J. H. Exton. 1997. Cloning and characterization of phospholipase D from rat brain. J. BioI. Chem. 272, 29263-29271 https://doi.org/10.1074/jbc.272.46.29263
  8. Sung, T. C., R. L. Roper, Y. Zhang, S. A. Rudge, R. Temel, S. M. Hammond, A. J. Morris, B. Moss, J. Engebrecht and M. A. Frohman. 1997. Mutagenesis of phospholipase D definesasuperfamily including a trans-Golgi viral protein required for poxvirus pathogenicity. EMBO J. 16, 4519-30 https://doi.org/10.1093/emboj/16.15.4519
  9. Min, D. S., S. K Park and J. H. Exton. 1998. Characterization of a rat brain phospholipase D isozyme. J. BioI. Chem. 273, 7044-51 https://doi.org/10.1074/jbc.273.12.7044
  10. Bae, C. D., D. S. Min, I. N. Fleming and J. H. Exton. 1998. Determination of interaction sites on the small G protein RhoA for phospholipase D. J. BioI. Chem. 273, 11596-604 https://doi.org/10.1074/jbc.273.19.11596
  11. Schmidt, M., M. Vob, P. A. Oude Weernink, J. Wetzel, M. Amano, K Kaibuchi and K H. Jakobs. 1999. A role for rho-kinase in rho-controlled phospholipase D stimulation by the m3 muscarinic acetylcholine receptor. J. BioI. Chem. 274, 14648-54 https://doi.org/10.1074/jbc.274.21.14648
  12. Min, D. S., N. J. Cho, S. H. Yoon, Y. H. Lee, S. J. Hahn, K H. Lee, M. S. Kim and Y. H. Jo. 2000. Phospholipase C, protein kinase C, Ca(2+)/calmodulin-dependent protein kinase II, a nd tyrosine phosphorylation are involved in carbachol-induced phospholipase 0 activation in Chinese hamster ovary cells expressing muscarinic acetylcholine receptor of Caenorhabditis elegans. J. Neurochem. 75, 274-81 https://doi.org/10.1046/j.1471-4159.2000.0750274.x
  13. Zhang, Y., Y. M. Altshuller, S. M. Hammond and M. A. Frohman. 1999. Loss of receptor regulation by a phospholipase D1 mutant unresponsive to protein kinase C. EMBO J. 18, 6339-48 https://doi.org/10.1093/emboj/18.22.6339
  14. Kim, Y., J. M. Han, J. B. Park, S. D. Lee, Y. S. Oh, C. Chung, T. G. Lee, J. H. Kim, S. K Park, J. S. Yoo, P. G. Suh and S. H. Ryu. 1999. Phosphorylation and activation of phospholi pase D1 by protein kinase C in vivo: determination of multiple phosphorylation sites. Bioch emistry. 38, 10344-51 https://doi.org/10.1021/bi990579h
  15. Lopez, I., R. S. Arnold and J. D. Lambeth. 1998. Cloning and initial characterization of a human phospholipase D2 (hPLD2). ADP-ribosylation factor regulates hPLD2. J. BioI. Chem. 273, 12846-52 https://doi.org/10.1074/jbc.273.21.12846
  16. Sung, T. C., Y. M. Altshuller, A. J. Morris and M. A. Frohman. 1999 Molecular analysis of mammalian phospholipase D2. J. BioI. Chem. 274, 494-502 https://doi.org/10.1074/jbc.274.1.494
  17. Marcil, J., D. Harbour, P. H. Naccache and S. Bourgoin. 1997. Human phospholipase D1 can be tyrosine-phosphorylated in HL-60 granulocytes. J. BioI. Chem. 272, 20660-64 https://doi.org/10.1074/jbc.272.33.20660
  18. Min, O. S., E. G. Kim and J. H. Exton. 1998. Involvement of tyrosine phosphorylation and protein kinase C in the activation of phospholipase D by H2O2 in Swiss 3T3 fibroblasts. J. BioI. Chem. 273, 29986-94 https://doi.org/10.1074/jbc.273.45.29986
  19. Slaaby, R., T. Jensen, H. S. Hansen, M. A. Frohman and K. Seedorf. 1998. PLD2 complexes with the EGF receptor and undergoes tyrosine phosphorylation at a single site upon agonist stimulation. J. BioI. Chem. 273, 33722-27 https://doi.org/10.1074/jbc.273.50.33722
  20. Parmentier, J. H., M. M. Muthalif, A. E. Saeed and K. U. Malik. 2001. Phospholipase D activation by norepinephrine is mediated by 12(s)-, 15(s)-, and 20-hydroxyeicosatetraenoic acids generated by stimulation of cytosolic phospholipase A2. tyrosine phosphorylation of phospholipase D2 in response to norepinephrine. J. BioI. Chem. 276, 15704-11 https://doi.org/10.1074/jbc.M011473200
  21. Kumada, T., H. Miyata and Y. Nozawa. 1993. Involvement of tyrosine phosphorylation in IgE receptor-mediated phospholipase D activation in rat basophilic leukemia (RBL2H3) cells. Biochem. Biophys. Res. Commun. 191, 1363-8 https://doi.org/10.1006/bbrc.1993.1367
  22. Bourgoin, S. and S. Grinstein 1992. Peroxides of vanadate induce activation of phospholipase 0 in DHL-60 cells. Role of tyrosine phosphorylation. J. BioI. Chem. 267, 11908-16
  23. Parinandi, N. L., S. Roy, S. Shi, R. J. Cummings, A. J. Morris, J. G. N. Garcia and V. Natarajan. 2001. Role of Src kinase in diperoxovanadate-mediated activation of phospholipase D in endothelial cells. Arch. Biochem. Biophys. 396, 231-42
  24. Cissel, D. S., P. F. Fraundorfer and M. A. Beaven. 1998. Thapsigargin-induced secretion is dependent on activation of a cholera toxin-sensitive and phosphatidylinositol-3-kinase-regulated phospholipase D in a mast cell line. J. Pharmacol. Exp. Ther. 285, 110-8
  25. Brown, F. D., N. Thompson, K. M. Saqid, J. M. Clark, O. Powner, N. T. Thompson, R. Solari and M. J. O. Wakelam. 1998. Phospholipase Dllocalises to secretory granules and lysosomes and is plasma-membrane translocated on cellular stimulation. Curr. BioI. 8, 835-8 https://doi.org/10.1016/S0960-9822(98)70326-4
  26. Way, G., N. O'Luanaigh and S. Cockcroft. 2000. Activation of exocytosis by cross-linking of the IgE receptor is dependent on AOP-ribosylation factor I-regulated phospholipase o in RBL-2H3 mast cells: evidence that the mechanism of activation is via regulation of phosphatidylinositol 4,5-bisphosphate synthesis. Biochem. J. 346, 63-70 https://doi.org/10.1042/0264-6021:3460063
  27. Dinh, T. T. and O. A. Kennerly. 1991. Assessment of receptor-dependent activation of phosphatidylcholine hydrolysis by both phospholipase D and phospholipase C. Cell Regul. 2, 299-309
  28. Lin, P. and A. M. Gilfillan. 1992. The role of calcium and protein kinase C in the IgE-dependent activation of phosphatidylcholine-specific phospholipase D in a rat mast (RBL 2H3) cell line. Eur. J. Biochem. 207, 163-8 https://doi.org/10.1111/j.1432-1033.1992.tb17033.x
  29. Kumada, T., S. Nakashima, H. Miyata and Y. Nozawa. 1994. Potent activation of phospholipase D by phenylarsine oxide in rat basophilic leukemia (RBL-2H3) cells. Biochem. Biophys. Res. Commun. 199, 792-8 https://doi.org/10.1006/bbrc.1994.1299
  30. Chai, W. S., Y. M. Kim, C. Combs, M. A. Frohman and M. A. Beaven. 2002. Phospholipases D1 and D2 regulate different phases of exocytosis in mast cells. J. Immunol.168, 5682-9 https://doi.org/10.4049/jimmunol.168.11.5682
  31. Chahdi, A., W. S. Choi, Y. M. Kim, P. F. Fraundorfer and M. A. Beaven. 2002. Serine/threonine protein kinases synergistically regulate phospholipase D1 and 2 and secretion in RBL-2H3 mast cells. Mol. lmmunol. 38, 1269-76
  32. Ali, H., J. R. Cunha-Melo, W. F. Saul and M. A. Beaven. 1990. Activation of phospholipase C via adenosine receptors provides synergistic signals for secretion in antigen- stimulated RBL-2H3 cells. Evidence for a novel adenosine receptor. J. BioI. Chem. 265, 745-53
  33. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680-5 https://doi.org/10.1038/227680a0
  34. Massenburg, D., J. S. Han, M. Liyanage, W. A. Patton, S. G. Rhee, J. Moss and M. Vaughan. 1994. Activation of rat brain phospholipase D by ADP-ribosylation factors 1,5, and 6: separation of ADP-ribosylation factor-dependent and oleate-dependent enzymes. Proc. Natl. Acad. Sci. USA. 91, 11718-22
  35. Ali, H., O. H. Choi, P. F. Fraundorfer, K. Yamada, H. M. S. Gonzaga and M. A. Beaven. 1996. Sustained activation of phospholipase D via adenosine A3 receptors is associated with enhancement of antigen- and Ca(2+)-ionophore-induced secretion in a rat mast cell line. J. Pharmacol. Exp. Ther. 276, 837-45
  36. Kawakami, T. and S. J. Galli. 2002. Regulation of mast-cell and basophil function and survival by IgE. Nat. Rev. Immunol. 2, 773-86 https://doi.org/10.1038/nri914
  37. Holowka, D. and B. Baird. 2001. Fc(epsilon)Rl as a paradigm for a lipid raft-dependent receptor in hematopoietic cells. Semin. Immunol. 13, 99-105 https://doi.org/10.1006/smim.2000.0301