DOI QR코드

DOI QR Code

한국 조릿대집단의 공간적 상관관계

Spatial Autocorrelation within Three Populations of Sasa borealis in Korea

  • 허만규 (동의대학교 분자생물학과)
  • Huh Man Kyu (Department of Molecular Biology, Dongeui University)
  • 발행 : 2005.06.01

초록

조릿대(Sasa borealis)집단에서 미세지리적 변이에 대한 공간적 상관관계를 조사하였다. 각 거리등급당 대립유전자좌위에서 연결계수(하나의 대립유전자좌위에서 유전자형의 조합)를 산출하였으며 그 계수가 임의 예상 값에 유의성을 가지는지 검증하였다. 150 경우 중 25 경우$(16.7\%)$가 예상 값과 유의하게 차이를 나타내었다. 이들 값 중에서 8경우$(4.7\%)$는 음의 값으로 거리등급에서 개체쌍이 유전적 비친화성이 있음을 나타낸다. 조릿대는 죽세공에 쓰이므로 인위적 별채에 의해 한국내 자연집단은 유효 집단이 유지되지 못하는 등 집단 파괴가 이루어지고 있다. 특히 조릿대가 잘 발달되어온 지리산 집단의 경우 공간적 유전 구조가 결여되어 있었다.

Spatial autocorrelation was applied to microgeographic variations of Sasa borealis populations in Korea. Separate counts of each type of join (combination of genotypes at a single locus) for each allele, and for each distance class of separation, were tested for significant deviation from random expectations by calculating the Standard Normal Deviation. Moran's I was significantly different from the expected value in 25 of 150 cases $(16.7\%)$. Seven of these values $(4.7\%)$ were negative, indicating genetic dissimilarity among pairs of individuals in the ten distance classes. Populations of S. borealis are small in Korea, and are distributed with occasional cutting of seed-bearing stems used for sieves. Thus, artificial disturbance may contribute to the fact that the S. borealis population of Jirisan is unusual in lacking spatial genetic structure.

키워드

참고문헌

  1. Argyres, A. Z. and J. Schmit. 1991. Microgeographic genetic structure of morphologicaland life history traits in a natural population of Impatiens capensis. Evolution 45, 178-189 https://doi.org/10.2307/2409492
  2. Bradshaw, A. D. 1972. Some evolutionary consequences of being a plant. Evol. Biol. 5, 25-47
  3. Bradshaw, A. D. 1984. Ecological Significance of Genetic Variation between Populations, pp. 213-228. In Dirzo, R. and J. Sarukhan (eds.), Perspectives on Plant Population Ecology, Sinauer Associates, Sunderland, MA
  4. Cliff, A. D. and J. K. Ord. 1981. Spatial Processes: Models and Applications. Pion, London
  5. Conner, J. K., S. Rush, S. Kercher and P. Tennetten. 1996. Measurements of natural selection on floral traits in wild radish (Raphanus raphanistrum). II. Selection through lifetime male and total fitness. Evolution 50, 1137-1146 https://doi.org/10.2307/2410654
  6. Dewey, S. E. and J. S. Heywood. 1988. Spatial genetic structure in a population of Psychotria nervosa. I. Distribution of genotypes. Evolution 42, 834-838 https://doi.org/10.2307/2408877
  7. Ehrlich, P. R and P. H. Raven. 1969. Differentiation of populations. Science 165, 1228-1232 https://doi.org/10.1126/science.165.3899.1228
  8. Epperson, B. K. 1990. Spatial autocorrelation of genotypes under directional selection. Genetics 124, 757-771
  9. Epperson, B. K. 1995. Fine-scale spatial structure: correlations for individual genotypes differ from those for local gene frequencies. Evolution 49, 1022-1026 https://doi.org/10.2307/2410424
  10. Epperson, B. K. and R. W. Allard. 1989. Spatial autocorrelation analysis of the distribution of genotypes within populations of lodgepole pine. Genetics 121, 369-377
  11. Epperson. B. K. and M. T. Clegg. 1986. Spatial autocorrelation analysis of flower color polyrnorphisrns within substructured populations of morning glory (Ipomoea purpurea). Am. Nat. 128, 840-858 https://doi.org/10.1086/284609
  12. Levin, D. A. and H. W. Kerster. 1974. Gene flow in seed plants. Evol. Biol. 7, 139-220
  13. Levin, D. A. 1984. Inbreeding depression and proximity-dependent crossing succession in Phlox drummondii. Evolution 38, 116-127 https://doi.org/10.2307/2408551
  14. Ohsawa, R, N. Furuya and Y. Ukai. 1993. Effects of spatially restricted pollen flow on spatial genetic structure of an animal-pollinated allogamous plant. Heredity 71, 64-73 https://doi.org/10.1038/hdy.1993.108
  15. Price, M. and N. M. Waser. 1979. Pollen dispersal and optimal outcrossing in Delphinium Nelsoni. Nature 277, 294-297 https://doi.org/10.1038/277294a0
  16. Schoen, D. J. and R. G. Latta. 1989. Spatial autocorrelation of genotypes in populations of Impatiens pallida and Impatiens capensis. Heredity 63, 181-189 https://doi.org/10.1038/hdy.1989.90
  17. Slatkin, M. 1987. Gene flow and geographic structure of natural populations. Science 236, 787-792 https://doi.org/10.1126/science.3576198
  18. Sokal, R. R .and N. L. Oden. 1978a. Spatial autocorrelation in biology 1. Methodology. Biol. J. Linn. Soc. 10, 199-228 https://doi.org/10.1111/j.1095-8312.1978.tb00013.x
  19. Sakal, R. R. and N. L. Oden. 1978b. Spatial autocorrelation in biology 2. Some biological implications and four applications of evolutionary and ecological interest. Biol. J. Linn. Soc. 10, 229-249 https://doi.org/10.1111/j.1095-8312.1978.tb00014.x
  20. Soltis, D. E., C. H. Haufler, D. C. Darrow and G. J. Gastony. 1983. Starch gel electrophoresis of ferns: A compilation of grinding buffers, gel and electrode buffers, and staining schedules. Am. Fern J. 73, 9-27 https://doi.org/10.2307/1546611
  21. Waser, N. M. and M. Price. 1983. Optimal and Actual Outcrossing in Plants, and the Nature of Plant Pollinator Interactions, pp. 341-360. In Jones, C. E. and R J. Little (eds.), Handbook of Experimental Pollination Biology, Van Nostrand Reinhold, NY
  22. Weeden, N. F. and J. F. Wendel. 1989. Genetics of Plant Isozymes, pp. 46-72, In Soltis, D. E. and P. S. Soltis (eds.), Isozymes in Plant Biology, Dioscorides Press, Portland
  23. Wright, S. 1978. Evolution and the Genetics of Populations Vol. 4. Variability within and among Natural Populations, Univ Chicago Press, Chicago, pp 580