DOI QR코드

DOI QR Code

Neuronal Nitric Oxide Synthase-Immunoreactive Neurons In the Hamster Visual Cortex: Lack of Co-localization with Parvalbumin

햄스터 시각피질에서 Neuronal nitric oxide synthase-면역반응성 뉴런: parvalbumin과의 co-localization 부재

  • Jin Mi-Joo (Agrobiotechnology Education Center, NURI, Kyungpook National University) ;
  • Lee Jee-Eun (Department of Biology, College of Natural Science, Kyungpook National University) ;
  • Ye Eun-Ah (Department of Biology, College of Natural Science, Kyungpook National University) ;
  • Jeon Chang-Jin (Department of Biology, College of Natural Science, Kyungpook National University)
  • 진미주 (경북대학교 생물건강농업생명인재양성사업단) ;
  • 이지은 (경북대학교 자연과학대학 생물학과) ;
  • 예은아 (경북대학교 자연과학대학 생물학과) ;
  • 전창진 (경북대학교 자연과학대학 생물학과)
  • Published : 2005.06.01

Abstract

Nitric oxide (NO) and calcium-binding proteins occur in various types of cells in the central nervous system. They are important signaling and calcium buffering molecules, respectively. In the present study, using immunocytochemistry we examined the distribution and the co-localization pattern of neurons containing neuronal nitric oxide synthase (nNOS) and parvalbumin in the visual cortex of hamster. The overall number of parvalbumin-immunoreactive (IR) neurons was 17 times higher than that of the nNOS-IR neurons in the hamster visual cortex. The highest differences were found in layer V, where parvalbumin-IR neurons were 54.7 times more abundant than nNOS-IR neurons. Many nNOS- and parvalbumin-IR neurons were similar in size, shape, and manner of distribution in the visual cortex. However, two-color immunofluorescence revealed that no neurons in the hamster visual cortex expressed both nNOS and parvalbumin. The present results indicate that there are subtle species differences in the co-localization pattern between nNOS and calcium-binding proteins. The present results also suggest not only the heterogeneity and functional diversity of nNOS-IRneurons in the visual cortex, but also the importance of understanding animal diversity

산화질소(NO)와 칼슘 결합 단백질은 중추신경계의 다양한 세포들에서 나타나며, 이들은 각각 중요 신호전달 분자와 칼슘 완충 분자이다. 본 연구는 햄스터의 시각피질에서 뇌산화질소 합성효소 (nNOS)와 parvalbumin을 포함하는 뉴런들의 분포와 이들의 co-localization 양상을 면역세포화학적 기법을 이용하여 알아보았다. 햄스터 시각피질에서 parvalbumin에 대한 면역 반응성을 나타내는 뉴런들의 전체 수는 nNOS에 대한 면역 반응성을 보이는 뉴런들의 수보다 17배나 많았다. 가장 큰 차이는 시각피질 제5충에서 발견되었으며, 이곳에서 parvalbumin-면역 반응성 뉴런이 nNOS-면역 반응성 뉴런들의 수보다 54.7배나 높았다. nNOS-또는 parvalbumin-면역 반응성 뉴런들은 크기와 형태, 분포 방식이 시각피질에서 유사하게 나타났다. 그러나 이색 면역형광 기법은 햄스터 시각피질에서 nNOS와 parvalbumin을 모두 발현하는 뉴런은 없음을 보여주었다. 본 연구의 결과는 nNOS와 칼슘 결합 단백질 사이의 co-localization양상이 종간에 차이가 존재함을 나타내며 또한 시각피질에 있는 nNOS-면역 반응성 뉴런들의 다양성과 이질성뿐만 아니라 동물 다양성 이해의 중요성을 함께 제시한다고 볼 수 있다.

Keywords

References

  1. Aoki, C. S., S. Fenstemaker, M. Lubin and C. G. Go. 1993. Nitric oxide synthase in the visual cortex of monocular monkeys as revealed by light and electron microscopic immunocytochemistry. Brain Res. 620, 97-113 https://doi.org/10.1016/0006-8993(93)90275-R
  2. Baimbridge, K. G., M. R. Celio and J. H. Rogers. 1992. Calcium-binding proteins in the nervous system. Trends Neurosci. 15, 303-307 https://doi.org/10.1016/0166-2236(92)90081-I
  3. Berardi, N., T. Pizzorusso, G. M. Ratto and L. Maffei. 2003. Molecular basis of plasticity in the visual cortex. Trends Neurosci. 26, 369-378 https://doi.org/10.1016/S0166-2236(03)00168-1
  4. Bertini, G., Z. C. Peng and M. Bentivoglio. 1996. The chemical heterogeneity of cortical interneurons: .nitric oxide synthase vs. calbindin and parvalbumin immunoreactivity in the rat. Brain Res. Bull. 39, 261-266 https://doi.org/10.1016/0361-9230(95)02133-7
  5. Bltimcke, L., P. R. Hof and J. H. Morrison. 1990. Distribution of parvalbumin immunoreactivity in the visual cortex of old world monkeys and humans. J. Comp. Neurol. 301, 417-432 https://doi.org/10.1002/cne.903010307
  6. Cellerino, A., R. Siciliano, J. Domenici and J. Mafferi. 1992. Parvalbumin immunoreactivity: a reliable marker for the effects of monocular deprivation in the rat visual cortex. Neuroscience 51, 749-753 https://doi.org/10.1016/0306-4522(92)90514-3
  7. Cha, C. L., M. R. Uhm, D. H. Shin, Y. H. Chung and S. H. Baik. 1998. Immunocytochemical study on the distribution of NOS-immunoreactive neurons in the cerebral cortex of aged rats. NeuroReport 9, 2171-2174 https://doi.org/10.1097/00001756-199807130-00004
  8. Daw, N. W., S. N. Reid and C. J. Beaver. 1999. Development and function of metabotropic glutamate receptors in cat visual cortex. J. Neurobiol. 41, 102-107 https://doi.org/10.1002/(SICI)1097-4695(199910)41:1<102::AID-NEU13>3.0.CO;2-2
  9. Dawson, V. L. and T. M. Dawson. 1996. Nitric oxide actions in neurochemistry. Neurochem. Int. 29, 97-110 https://doi.org/10.1016/0197-0186(95)00149-2
  10. Demeulemeester, H., J. Arckens, F. Vandesande, G. A. Orban, C. W. Heizmann and R. Pochet. 1991. Calcium-binding proteins and neuropeptides as molecular markers of GABAergic intemeurons in the cat visual cortex. Exp. Brain Res. 84, 538-544
  11. Dhar, P., R. D. Mehra, V. Sidharthan and K. Sharma. 2001. Parvalbumin and calbindin D-28K immunoreactive neurons in area MT of rhesus monkey. Exp. Brain Res. 137, 141-149 https://doi.org/10.1007/s002210000631
  12. Glezer, I. I., P. R. Hof and P. J. Morgane. 1992. Calretininimmunoreactive neurons in the primary visual cortex of dolphin and human. Brain Res. 595, 181-188 https://doi.org/10.1016/0006-8993(92)91047-I
  13. Glezer, I. I., P. R. Hof and P. J. Morgane. 1998. Comparative analysis of calcium-binding protein-immunoreactive neuronal populations in the auditory and visual systems of the bottlenose dolphin (fursiops truncatus) and macaque monkey (Macaca fasciularis). J. Chem. Neuroanat. 15, 203-237 https://doi.org/10.1016/S0891-0618(98)00022-2
  14. Gonchar, Y and A. Burkhalter. 1997. Three distinct families of GABAergic neurons in rat visual cortex. Cerebral Cortex 7, 347-358 https://doi.org/10.1093/cercor/7.4.347
  15. Gonchar, Y and A. Burkhalter. 1999. Differential subcellular localization of forward and feedback interareal inputs to parvalbumin expressing GABAergic neurons in rat visual cortex. J. Comp. Neurol. 406, 346-360 https://doi.org/10.1002/(SICI)1096-9861(19990412)406:3<346::AID-CNE4>3.0.CO;2-E
  16. Gonchar, Y., J. Pang, B. Malitschek, B. Bettler and A. Burkhalter. 2001. Subcellular localization of GABA(B) receptor subunits in rat visual cortex. J. Comp. Neurol. 431, 182-197 https://doi.org/10.1002/1096-9861(20010305)431:2<182::AID-CNE1064>3.0.CO;2-K
  17. Goodchild, A. K. and P. R. Martin. 1998. The distribution of calcium-binding proteins in the lateral geniculate nucleus and visual cortex of new world monkey, the marmoset, callithrix jacchus. Vis. Neurosci. 15, 625-642
  18. Heizmann, C. W., J. Rohrenbeck and W. Kamphuis. 1990. Parvalbumin, molecular and functional aspects. Adv. Exp. Med. BioI. 269, 57-66 https://doi.org/10.1007/978-1-4684-5754-4_8
  19. Hendrickson, A. E., J. F. M. Van Brederode, A. Mulligan and M. R. Celio. 1991. Development of the calcium-binding proteins parvalbumin and calbindin in monkey striate cortex. J. Comp. Neurol. 307, 626-646 https://doi.org/10.1002/cne.903070409
  20. Hendry, S and R. K. Carder. 1992. Organization and plasticity of GABA neurons and functional aspects. Adv. Exp. Med. BioI. 269, 57-66
  21. Hendry, S. H and R. K. Carder. 1993. Neurochemical compartmentation of monkey and human visual cortex : similarities and variations in calbindin immunoreactivity . across species. Vis. Neurosci. 10, 1109-1120 https://doi.org/10.1017/S095252380001021X
  22. Hogan, D and N. E. J. Berman. 1994. The development of parvalbumin and calbindin-D28K immunoreactive intemeurons in kitten visual cortical areas. Dev. Brain Res. 77, 1-21 https://doi.org/10.1016/0165-3806(94)90209-7
  23. Hong, S. K., J. Y. Kim and C. J. Jeon. 2002. Immunocytochemical localization of calretinin in the superficial layers of the cat superior colliculus. Neurosci. Res. 44, 325-335 https://doi.org/10.1016/S0168-0102(02)00154-2
  24. Hubel, D. 1982. Explorations of the primary visual cortex, 1955-1978 (Noble lecture), Nature 299, 515-524
  25. Hubel, D. 1988. Eye, Brain, and Vision. WH Freeman, New York
  26. Ichida, J. M., M. G. Rosa and V. A. Casagrande. 2000. Does the visual system of the flying fox resemble that of primates? The distribution of calcium-binding proteins in the primary visual pathway of Pteropus poliocephalus. J. Comp. Neurol. 417, 73-87 https://doi.org/10.1002/(SICI)1096-9861(20000131)417:1<73::AID-CNE6>3.0.CO;2-C
  27. Jeon, C. J and H. J. Park. 1997. Immunocytochemicallocalization of calcium-binding protein calretinin containing neurons in cat visual cortex. Mol. Cells 7, 721-725
  28. Jeon, C. J., J. K. Pyun and H. W. Yang. 1998. Calretinin and calbindin D28K immunoreactivity in the superficial layers of the rabbit superior colliculus. Neuroreport 9, 3847-3852 https://doi.org/10.1097/00001756-199812010-00015
  29. Jinno, S., N. Kinukawa and T. Kosaka. 2001. Morphometric multivariate analysis of GABAergic neurons containing calretinin and neuronal nitric oxide synthase in the mouse hippocampus. Brain Res. 900, 195-204 https://doi.org/10.1016/S0006-8993(01)02292-2
  30. Kang, Y. S., W. M. Park, J. K. Lim, S. Y. Kim and C. J. Jeon. 2002. Changes of calretinin, calbindin D28K and parvalbumin immunoreactive neurons in the superficial layers of the hamster superior colliculus following monocular enucleation. Neurosci. Left. 330, 104-108 https://doi.org/10.1016/S0304-3940(02)00723-1
  31. Kiss, J. P. 2000. Role of nitric oxide in the regulation of monoaminergic neurotransmission. Brain Res. Bull. 52, 459-466 https://doi.org/10.1016/S0361-9230(00)00282-3
  32. Lee, J. E., C. H. Ahn, J. Y. Lee, E. S. Chung and C. J. Jeon. 2004. Nitric oxide synthase and calcium-binding proteincontaining neurons in the hamster visual cortex. Mol. Cells 18, 30-39
  33. Lee, J. E. and C. J. Jeon. 2005. lmmunocytochemicallocalization of nitric oxide synthase-containing neurons in mouse and rabbit visual cortex and co-localization with calciumbinding proteins. Mol. Cells 19, in press
  34. Leuba, G. and K. Saini. 1996. Calcium-binding proteins immunoreactivity in the human subcortical and cortical visual structures. Vis. Neurosci. 13, 997-1009 https://doi.org/10.1017/S0952523800007665
  35. Leuba, G. and K. Saini. 1997. Co-localization of parvalbumin, calretinin, and calbindin D-28k in human cortical and subcortical visual structures. J. Chem. Neuroanat. 13, 41-52. https://doi.org/10.1016/S0891-0618(97)00022-7
  36. Leuba, G., R. Kraftsik and K. Sainin. 1998. Quantitative distribution of parvalbumin, calretinin, and calbindin D28k immunoreactive neurons in the visual cortex of normal and Alzheimer cases. Exp. Neurol. 152, 278-291 https://doi.org/10.1006/exnr.1998.6838
  37. Luth, H. J., I. Blumcke, E. Winkelmann and M. R. Celio. 1993. The calcium-binding protein calretinin is localized in a subset of interneurons in the rat cerebral cortex: a light and electron immunohistochemical study. J. Hirnforsch. 34, 93-103
  38. Luth, H. J., A. Hedlich, H. Hilbig, E. Winkelmann and B. Mayer. 1994. Morphological analyses of NADPH-diaphorasej nitric oxide synthase positive structures in human visual cortex. J. Neurocytol. 23, 770-782 https://doi.org/10.1007/BF01268089
  39. Meskenaite, V. 1997. Calretinin-irnmunoreactive local circuit neurons in area 17 of the cynomolgus monkey, macaca fascicularis. J. Comp. Neurol. 379, 113-132 https://doi.org/10.1002/(SICI)1096-9861(19970303)379:1<113::AID-CNE8>3.0.CO;2-7
  40. Park, H. J., S. K. Hong, J. H. Kong and C. J. Jeon. 1999. Localization of calcium-binding protein parvalbumin-immunoreactive neurons in mouse and hamster visual cortex. Mol. Cells 9, 542-547
  41. Park, H. J., J. H. Kong, Y. S. Kang, W. M Park, S. A. Jeong, S. M Park, J. K. Um and C. J. Jeon. 2002. The distribution and morphology of calbindin D28k-, calretinin-immunoreactive neurons in the visual cortex of mouse. Mol. Cells 14, 143-149
  42. Rogers, J., M. Khan and J. Ellis. 1990. Calretinin: a gene for a novel calcium-binding protein expressed principally in neuron. J. Cell BioI. 105, 1343-1353
  43. Sandell, J. H. 1986. NADPH-diaphorase histochemistry in the macaque striate cortex. J. Comp. Neurol. 251, 388-397 https://doi.org/10.1002/cne.902510309
  44. Schafer, B. W and C. W. Heizmann. 1996. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem. Sci. 21, 134-140 https://doi.org/10.1016/0968-0004(96)10020-7
  45. Soares-Mota, M., J. Henze and R. Mendez-Otero. 2001. Nitric oxide synthase-positive neurons in the rat superior colliculus: colocalization of NOS with NMDAR1 glutamate receptor, GABA, and parvalbumin. J. Neurosic. Res. 64, 501-507 https://doi.org/10.1002/jnr.1102
  46. Stichel, C. C., W. Singer, C. W. Heizmann and A. W. Norman. 1987. Immunohistochemical localization of calciumbinding proteins, parvalbumin and calbindin-D28k, in the adult and developing visual cortex of cats : a light and electron microscopic study. J. Comp. Neurol. 263, 563-577
  47. Wiencken, A. E and V. A. Casagrande. 2000. The distribution of NADPH diaphorase and nitric oxide synthase (NOS) in relation to the functional compartments of areas V1 and V2 of primate visual cortex. Cerebral Cortex 10, 499-511 https://doi.org/10.1093/cercor/10.5.499
  48. Xiao, Y. M, Y. C. Diao and K. F. So. 1996. A morphological study of neurons expressing NADPH diaphorase activity in the visual cortex of the Golden hamster. Brain Behav. Evol. 48, 221-230 https://doi.org/10.1159/000113200
  49. Yan, Y. H., J. F. M. Van Brederode and A. E. Hendrickson. 1995. Developmental changes in calretinin expression in GABAergic and nonGABAergic neurons in monkey striate cortex. J. Comp. Neurol. 363, 78-92 https://doi.org/10.1002/cne.903630108
  50. Yan, Y. H., J. F. M. Van Brederode and A. E. Hendrickson. 1995. Transient co-localization of calretinin, parvalbumin, and calbindin-D28K in developing visual cortex of monkey. J. Neurocytol. 24, 825-837 https://doi.org/10.1007/BF01179982
  51. Yousef, T., U. Neubacher, U. T. Eysel and M. Volgushev. 2004. Nitric oxide synthese in rat visual cortex: an immunohistochemical study. Brain Res. Protoc. 13, 57-67 https://doi.org/10.1016/j.brainresprot.2004.01.004