DOI QR코드

DOI QR Code

Expression of Paenibacillus macerans Cycloinulooligosaccharide Fructanotransferase in Saccharomyces cerevisiae

Saccharomyces cerevisiae에서 Paenibacilius macerans 유래 cycloinulooligosaccha-ride fructanotransferase의 발현

  • Kim Hyun-Chul (Department of Biotechnology & Bioengineering, Dong-Eui University) ;
  • Kim Jeong-Hyun (Department of Biomaterial Control, Dong-Eui University) ;
  • Jeon Sung-Jong (Department of Biomaterial Control, Dong-Eui University) ;
  • Choi Woo-Bong (Department of Biomaterial Control, Dong-Eui University) ;
  • Nam Soo-Wan (Department of Biomaterial Control, Dong-Eui University)
  • 김현철 (동의대학교 바이오물질제어학과) ;
  • 김정현 (동의대학교 생명공학과) ;
  • 전숭종 (동의대학교 생명공학과) ;
  • 최우봉 (동의대학교 생명공학과) ;
  • 남수완 (동의대학교 생명공학과)
  • Published : 2005.06.01

Abstract

The cycloinulooligosaccharide fructanotransferase (CFTase) gene (cft) from Paenibacillus macerans was subcloned into an E. coli-yeast shuttle vector, pYES2.0, resulting in pYGECFTN. The plasmid pYGECFTN (8.6 kb) was introduced into Saccharomyces cerevisiae SEY2102 cells and then the transformants were selected on the synthetic defined media lacking uracil. The cft gene expression in yeast transformant was demonstrated by the analyses cyclofructan (CF) spots on thin-layer chromatogram. The recombinant CFTase was not secreted into the medium and localized in the periplasmic space. The production of CF was observed after 5 min of the enzymatic reaction with inulin. The optimun pH and temperature for CF production were found to be at pH 8.0 and $45^{\circ}C$, respectively. Enzyme activity was stably maintained up to $55^{\circ}C$. The CF was produced from all inulin sources and was most efficiently produced from dahlia tubers and Jerusalem artichokes.

Paenibacillus macerans 유래의 cycloinulooligosaccharide fructanotransferase (CFTase) 유전자(cft)를 Saccharomyces cerevisiae SEY2102에 발현시키기 위해 대장균과 효모의 shuttle vector인 pYES2.0에 subcloning 하였다. 구축된 pYGECFTN (8.6 kb) plasmid를 S. cerevisiae SEY2102에 형질전환하였고, uracil이 결핍된 SD 배지에서 선별하였다. cft 유전자는 선별된 형질전환체(S. cerevisiae SEY2102/pYCECFTN)에서 GAL1 promoter 조절하에 성공적으로 발현되어 cyclofructan(CF)을 생성함을 TLC로 확인하였다. 그러나, 균체 외로의 효소 분비는 이루어지지 않았고 cytoplasm보다 periplasmic space에 많이 존재하였다 S. cerevisiae에서 발현된 P. polymyxa유래 CFTase보다 P. macerans 유래 CFTase의 CF 생성이 image analyzer로 확인한 결과, 더 많음을 알 수 있었다. 효소반응 5분째부터 CF가 생성됨을 확인하였고, 최적온도와 최적 pH는 각각 $45^{\circ}C$와 pH 8.0로 나타났으며, $55^{\circ}C$까지 효소활성이 안정적으로 유지되었다. Dahlia tubers, chicory root, Jerusalem artichoke 등의 inulin 기질에 따른 반응산물 분석 결과, 모든 기질로부터 CF가 생산되었으며, dahlia tubers와 Jerusalem artichoke로부터 가장 효과적으로 생성되었다.

Keywords

References

  1. Bajpai, P. K. and P. Bajpai. 1991. Cultivation and utilization of Jerusalem artichoke for ethanol, single cell protein, and high fructose syrup production. Enz. Microbial. Technol. 13, 359-362 https://doi.org/10.1016/0141-0229(91)90158-7
  2. Emr, S. D., R. Schekman, M. C. Flessel and J. Thorner. 1983. An MFa1-SUC2 (a-factor invertase) gene fusion for study of protein localization and gene expression in yeast. Proc. Natl. Acad. Sci. USA. 80, 7080-7084
  3. Eom, S. J., Y. M. Kwon and Y. J. Choi. 1995. Molecular cloning of Pseudomonas sp. inulinase gene and its expression in E. coli. Kor J. Appl. Microbiol. Biotechnol. 23, 550-555
  4. Han, Y. J., D. O. Kang, S. C. Lee, B. Y. Kim, H. H. Suh, J. M. Kim, T. I. Mheen and J. S. Ahn. 1994. Secretion of a Bacillus endoglucanase in Saccharomyces cerevisiae by its own signal sequence. J. Microbiol. Biotechnol. 4, 24-29
  5. Hirst, E. L., D. J. Mcgilvary and E. G. V. Percival. 1950. Studies on fructosans. J. Chem. Soc. 72, 1279-1284
  6. Ito, H., Y. Fukuda, K. Murata and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163-168
  7. Jeon, S. J., D. J. You, H. J. Kwon, S. Kanaya, N. Kunihiro, K. H. Kim, Y. H. Kim and B. W. Kim. 2002. Cloning and characterization of cycloinulooligosaccharide fructanotransferase (CFTase) from Bacillus polymyxa MGL21. J. Microbiol. Biotechnol. 12, 921-928
  8. Kanai, T., N. Ueki, T. Kawaguchi, Y. Teranishi, H. Atomi, C. Tomorbaatar, M. Ueda and A. Tanaka. 1997. Recombinant thermostable cycloinulooligosaccharide fructanotransferase produced by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 63, 4956-4960
  9. Kawamura, M., T. Uchiyama, K. Takashi, T. Yukiyoshi and M. Kenji. 1989. Formation of a cycloinulooligosaccharide from inulin by an extracellular enzyme of Bacillus circulans OKUMZ31B. Carbohydr. Res. 192, 83-90 https://doi.org/10.1016/0008-6215(89)85167-5
  10. Kim, H. Y. and Y. J. Choi. 2001. Molecular characterization of cycloinulooligosaccharide fructanotransferase from Bacillus macerans. Appl. Environ Microbiol. 67, 995-1000 https://doi.org/10.1128/AEM.67.2.995-1000.2001
  11. Kushibe, S., K. Mitsui, M. Yamagishi, K. Yamada and Y. Morimoto. 1995. Purification and characterization of cycloinulooligosaccharide fructanotransferase (CFrase) from Bacillus circulans MCl-2554. Biosci. Biotechnol. Biochem. 58, 31-34
  12. Kwon, Y. M., H. Y. Kim and Y. J. Choi. 2000. Cloning and characterization of Pseudomonas mucidolens exoinulinase. J. Microbiol. Biotechnol. 10, 238-243
  13. Lim, C. K., S. W. Nam, H. C. Kim, K. H. Kim and B. W. Kim. 2004. Production of cyclofructan by cycloinulooligosaccharide fructanotransferase expressed in Saccharomyces cerevisiae. Kor. J. Micrbiol. Biotechnol. 32, 60-66
  14. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 55, 952-959
  15. Nam, S. W., H. Y. Park, J. H. Kim, J. H. Seo, N. S. Han and B. W. Kim. 2001. Expression of Bacillus macerans cyclodextrin glucanotransferase gene in Saccharomyces cerevisiae. Biotechnol. Lett. 23, 727-730 https://doi.org/10.1023/A:1010303019603
  16. Nam, S. W., Yoda, K. and Yamasaki, M. 1993. Secretion and localization of invertase and inulinase in recombinant Saccharomyces cerevisiae. Biotechnol. Lett. 15, 1049-1054 https://doi.org/10.1007/BF00129936
  17. Park, J. B. and Y. J. Choi. 1996. Purification and characterization of inulin fructotransferase (depolymerizing) from Arthrobacter sp. A-6. J. Microbiol. Biotechnol. 6, 402-406
  18. Sawada, M., T. Tanaka, Y. Takai, T. Hanafrsa, T. Taniguchi, M. Kawamura and T. Uchiyama. 1991. The crystal structure of cycloinulohexaose produced from inulin by cycloinulooligosaccharide fructanotransferase. Carbohydr. Res. 217, 7-17 https://doi.org/10.1016/0008-6215(91)84112-R
  19. Schmid, G. 1989. Cyclodextrin glycosyltransferase production; yield enhancement by over expression of cloned genes. Trends Biotechnol. 7, 244-248 https://doi.org/10.1016/0167-7799(89)90015-2
  20. Scotti, P. A., M. Praestegaard, R. Chambert and M. R. PetitGlatron. 1996. The targeting of Bacillus subtilis levansucrase in yeast is correlated to both the hydrophobicity of the signal peptide and the net charge of the N-terminus mature part. Yeast 12, 953-963 https://doi.org/10.1002/(SICI)1097-0061(199608)12:10<953::AID-YEA998>3.0.CO;2-#
  21. Takai, Y., Y. Okumura, S. Takahashi, M. Sawada, M Kawamura and T. Uchiyama. 1993. A permethylated cyclic fructo-oligosaccharide host that can bind cation in solution. J. Chem. Soc. Chem. Commun. 1, 53-54
  22. Uchiyama, T., M. Kawamura, T. Uragami and H. Okuno. 1993. Complexing of cyclo-inulooligosaccharides with metal ions. Carbohydr. Res. 241, 245-248 https://doi.org/10.1016/0008-6215(93)80111-Q
  23. Wang, Z. and N. A. Da Silva. 1993. Improved protein synthesis and secretion through medium enrichment in a stable recombinant yeast strain. Biotechnol. Bioeng. 42, 95-102 https://doi.org/10.1002/bit.260420113
  24. Xiao, R., M. Tanida and S. Takao. 1989. Purfication and characteristics of two exo-inulinases from Chrysosporium panmorum. J. Ferment. Bioeng. 67, 331-334 https://doi.org/10.1016/0922-338X(89)90250-X

Cited by

  1. Cell Surface Display of Cycloinulooligosaccharide Fructanotransferase Gene in Saccharomyces cerevisiae vol.17, pp.2, 2007, https://doi.org/10.5352/JLS.2007.17.2.241