초록
The expected positioning accuracies of civil users utilizing modernized GPS and Galileo are derived using the error analysis in this paper. Since, in general, the performance of DLL, PLL and FLL is proportional to chip lengths and wavelengths, the positioning accuracies from various measurements of modernized GPS and Galileo are derived as function of chip length and wavelength. These results are compared with that from GPS Ll measurement. In absolute positioning, compared to GPS C/A code only case, more than 17 times performance improvement is expected when all civil code signals of modernized GPS and Galileo (L1, L2, L5, E1, E5A and E5B) are used. In relative positioning, compared to GPS L1 carrier phase only case, more than 2 times performance improvement is expected when all civil signals of modernized GPS and Calileo are used. Furthermore, the relationship between GDOP and RGDOP in single frequency case is expanded to general case where multiple frequencies and both code and carrier phase measurements are used.