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ABSTRACT

A key issue toward mobile multimedia communications is to create technologies for broadband signal
transmission that can support high quality services. Such a broadband mobile communications system should
be able to overcome severe distortion caused by tlme-varymg multi-path fading channel, while providing high
spectral efficiency and low power consumption. For these reasons, an adaptive suboptimum decision feedback
equalizer (DFE) for the single-carrier short-burst transmissions system is considered as one of the feasible
solutions. For the performance improvement of the system with the short-burst format including the short
training sequence, in this paper, the multiple-training least mean square (MTLMS) based DFE scheme with soft
decision feedback is proposed and its performance is investigated in mobile wireless channels throughout
computer simulation.
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multi-path fading channel [1]~[2]. Therefore, a
desired system should be designed to reject the
severe inter-symbol interference caused by multi-
path propagation and to be robust to time-
varying fading, while providing high spectral
efficiency and low power consumption. In many
current mobile wireless systems as well as future
mobile wireless packet data system, the short-
burst transmissions are used to reduce trans-
mission delay, and to limit the time variation of
wireless channels over a burst [3]. However,
training overhead is very significant for such
short burst formats. So, the availability of the
short training sequence and the fast converging
adaptive “algorithm is essential in the system
adopting the symbol-by-symbol adaptive equa-
lizer.

The recursive least squares (RLS)-type algori-
thms have been used commonly because these
algorithms provide a fast converging property
[4].{5]. But, these algorithms require high compu-
tational complexity and also provide ‘a numerical
instability when the eigenvalue spread of the
input correlation matrix is large [6]. As a
consequence, the RLS based equalizer consumes
a large amount of the computational power at
the receiver. By contrast, the least mean square
(LMS) algorithm has low computational com-
plexity but the convergence is very slow when
the eigenvalue spread of the input correlation
matrix is large [7]. A MTLMS algorithm has been
known as an effective adaptive algorithm [6] that
can provide the desired converging performance
with a competitive computational complexity in
such short-burst transmissions with a short
training sequence. This algorithm has mitigated
the problem of the slow convergence by using
the multiple-training method, ie., the reuse of
the received training symbols and of the
numerical instability by regularizing the solution
of the adaptive coefficient vector such that the
sensitivity to small eigenvalues is minimal while
this capability is absent from the conventional
LMS algorithm. Recently this MTLMS algorithm
has been applied to the mobile wireless co-
mmunications system, especially 15-136 receiver
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In this paper, to mitigate the effect of error
propagation and provide robustness at low
SNRs, we propose MTLMS based DFE with a
simple soft decision feedback device and inves-
tigate the performance of the equalizer according
to the iterations parameter, the length of the
training sequence andthe Doppler frequency in
mobile wireless channels throughout the com-
puter simulations.

This paper is organized as follows: In Section
II, we describe the scheme of MTLMS based DFE
and for the performance analysis, transceiver
model and wireless channel are modeled in
Section III. In Section IV, computer simulations
are executed and their results are discussed.
Finally, in Section V, concluding remarks are
presented.

IIl. MTLMS Based DFE with Soft Decision
Feedback

1. MTLMS Based DFE

Let the burst format be composed of the
training sequence and the message sequence. If
the DFE using the MTLMS algorithm is in the
training mode, the received training sequence is
repeatedly trained up to a pre-assigned iteration
number, K. Then the tracking mode is operated
to acquire the equalized message sequence. In
the training mode, the DFE tap coefficients are
acquired from the last iteration. In the tracking
mode, the message symbols are equalized with
these converged DFE tap coefficients as its
initials. In [8], the MTLMS algorithm was also
used extensively in the tracking mode for
exploring fully the decision information. How-
ever, the performance improvement is very
slightbut the complexity is increased. So, this
operation is not considered.

In the MTLMS based DFE, the DFE output

;zq(n) at the g-th iteration, 1<q<K for training
and g=1 for tracking, is given by

Nyl Ny
a'(my= Y, gi(mir(n-i)+ > gl (m Hd*(n-j)
= i @
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where £7(%6) and &;(m /) represent the feed-
forward filter (FFF) and feedback filter (FBF) tap
coefficients at g-th iteration, respectively. Nr and
Np are the length of FFF and FBF, respectively.

d¥(n~-Jj) represents the feedback symbol which
is the known symbol a(n-j} for training mode
and the previously detected hard- or soft-

decision symbol zzq(n— j) for tracking mode.

Note that r(n) is the received signal which has
the same value for all iterations and so the q can
be dropped. The DFE tap update equation using
MTLMS at the g-th iteration can be represented
as

gh(n+Li)=gl(mi)+ ppe ()x' (n~i)

for i=0,1,---,N}.—l ‘ (2)
gl (n+1; ) = gl (n; 1) + ppe? (m)d”" (n - j)
for J=12,N, o

where the superscript * denotes the complex
conjugation and pr and W represent the FFF step
size and the FBF step size, respectively. x(n-i) is
the ¢th power normalized output element of the
received sequence and given by

x(n—i)= r(n—i)/\J& + P(m1) O

where P(n;i) is the instantaneous power esti-
mate of r(n-1) and ¢ is a small constant that eli-
minate overflow when the value of P(ni) are
very small. For computing the values of P(n;i),
the exponential weighted method was used.

P(m;i) = BP(n-L;))+ (1= B)|r(n-i) 5)

wherg f is the forgetting factor between 0 and
1. The error signal is computed by

e(n)=a*(n)-d(n) ©)

In the MTLMS algorithm, note that the initial
weight vector at qth iteration is the same as the

last updated weight vector at {q-1)th iteration. In
addition, the term "normalized" was dropped for
convenience. The performance of the MTLMS
based DFE becomes better with the increase of
the iterations number K. However, the compu-
tational complexity also increases linearly with K.
The MTLMS algorithm has several merits over
other algorithms such as LMS and RLS [6]. The
MTLMS algorithm can permit the faster tracking
performance than the IMS algorithm in the
time-varying channel. In addition, because the
MTLMS algorithm performs regularization in
solving for the adaptive coefficients, it is more
robust to noise for spectrally nuiled data than
LMS algorithm. The RLS algorithm was shown
to have instability and noise amplification pro-
perties that are traceable to the large eigenvalue
spread of the data correlation matrix. But, the
MTLMS algorithm does not suffer from these
problems.

2. Simple Soft Decision Feedback

The problem of a DFE approach is the error
propagation. In this section, the simple soft
decision feedback device is described. While the
optimum soft feedback is estimated using maxi-
mum a posteriori probability (MAP) algorithms,
the simple soft decision method is acquired by
approximating the optimum approach and
requires only the simple operation of passing the
DFE output through a (soft) nonlinear function.

Note that although the a posteriori probability
of a(n)is, in general, a function of all available

observations, it is the current observation a(n)
that contributes the most to the value of this

probability (since ;z(n) is the equalized output
corresponding to a(n)). Thus, it is assumed that

the soft feedback @ (n) is a function only of the
current observation a(n). Accordingly,

da(n)= Ela(n)| a(n)) = Z a(n)P(a{n)) a(n))
Va(rn} (7)

and

Pla(n),a(n))y _  Plaln)| a(n)Plaln))
P@n) Y P@am)am)Pan)

Ya{n)
®)

P(a()| a(m) =
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where the a priori probability P(é(n) | a(n)) can
be given as

P(a(n) | a(n)) = J”‘Ty Exp(—y | a(n)- a(m) )

where v is the signal to ISI-plus-noise ratio.

Using Eq. (7), (8) and (9), and assuming that a(n)
is QPSK, the following soft decision function is
obtained:

(n) = fla(n) = %(tanh(ﬁy Re(a(m)+ J tanh{v2y Im(a(n)))

(10)

Soft feedback is obtained simply by passing
the real part and the imaginary part of the DFE
output through a hyperbolic tangent function.
This method requires the knowledge of the
signal to ISI-plus-noise ratio,T,, However, an
appropriate fixed value of T can be chosen
without greatly affecting the achievable perfor-
mance of the soft-feedback DFE.

lil. Channel and System Model for
Simulation

Mobile radio channels can be modeled as
multipath Rayleigh fading channels having an

impulse response M%7)= Y ()5 ~ 1) where
the coefficient a(t) is the I-th multipath gain
which is modeled as complex Gaussian random
processes with zero mean. Under the assum-
ptionsof wide sense stationary uncorrelated sca-
ttering and a common time selective correlation
function pacross the delay profile, the autocorre-
lation function yields

Elh(s 0’ (¢ = B3 ~<)p(t~ 1) )

where the superscript * denotes the complex
conjugation, P the delay power spectral density
or the power delay profile, and p the time
selective correlation function, normalized to unit
power, that is p(0)=1. A standard version of p,
which is derived under the assumption of isotro-
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pic scattering, is used as

plt=t")=J,@2rf(t -t") (12)

where f; is the one-sided Doppler spread and

Jo denotes the zeroth-order Bessel function of the

first kind. It is assumed that the path delay is

integer multiplies of T, i.e, 7=T, 1=0,1,..,L-1. In

addition, the channel gain is normalized, ie.,
L-|

nEla0f]=Z5R=1
channel  hi(47), and the nonminimum phase
channel h(t;7), models are considered and their
power delay profiles are given in Table 1. For
convenience of notation, the parameter T is
dropped in hi(t;7), i=1,2. Note that these channel
coefficients are similar to COST-207 channel
coefficients used in [10] The channel hi(t) has
the time dispersion of 3T; and the minimum
phase property. The channel hy(t), which re-
presents more severely distorted ISI channel, has
the time dispersion of 8T; and the non minimum
phase property. It is shown that h(t) has the
severe frequency selectivity and gives the worse
channel than h(t).

The minimum phase

Table 1. Power delay profiles

ran] A T I
channel model channel model
Delay, pl?)‘\:ve;ig% Delay, © p‘?)‘\:\:f,g?’l
0 0.575 0 0.213
1 Ts 0.362 Ts 0.405
2 2T, 0.057 - -
3 3T 0.006 3T, 0.263
8 - - 8T; 0.119

For representing the time-variation of the mo-
bile radio channel, the symbol-normalized fade
rate f;T; is the useful index, where f; is the
maximum Doppler frequency and T; is the
symbol duration. However, in a channel struc-
ture which incorporates periodic transmission of
training bits, fyT; is an incomplete measure of the
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rate at which the channel varies. Since the
training and tracking of the channel is performed
during the transmission of the TDMA slot, the
slot-normalized fade rate is used as a fading
channel index and is defined as [6]

. K= f;[rslol = f;iNsTs (11)

where Ty is the slot duration and N; is the
number of symbols per time slot. This number
represents the rough average number of occu-
rrences of deep fades per time slot.

A QPSK signal is transmitted. Each trans-
mitted burst contains the training sequence of
variable length A and the message sequence of
the length of 144 (only for the purpose of the
simulation). The length of the training sequence
are 12, 16, 20, 24, 28, 32 and 64 which corres-
pond to the overhead of about 7.7%, 10%, 12.2%,
14.3%, 16.3%, 18% and 31%, respectively. Note
that the small overhead represents high spectral
efficiency.

The carrier frequency is 5GHz and the channel
bandwidth is IMHz. The symbol interval is 1ps.
For 4-path channel model hi(t), the FFF length
was set to be 7 and the FBF length was set to be
4. For 9-path channel model h;(t), the FFF length
was set to be 11 and the FBF length was set to
be 9. The FFF step size was 0.05 and the FBF
step size was 0.005 for both channels. For the
soft decision feedback DFE, T=5dB is used [9].

IV. Performance Results

1. Computational Complexity Comparison

In Table 2, the computational complexities of
the MTLMS, RLS, fast RLS (FRLS), LMS, and
power-normalized LMS (NLMS) algorithms are
compared in terms of the number of operations
per input sample for training mode.

N denotes the number of equalizer tap
coefficients. The extensive computer simulations
have been carried out to compare and evaluate
the performance of the MTLMS based DFE with
hard or soft decision feedback.

2. Simulation Results

Table 2. Complexity comparisons of various algorithms

Algorithms mll?t(i)}?llilzlaet?ons %(l)\rll:géeli(
MTLMS K(2N+1) N
RLS 25N + 45N 2
FRLS 20N+5 3
LMS 2N+1 0
NLMS 2N+1 N

Since the MTLMS algorithm is the block-ite-
rative algorithm, the performance of a MTLMS
based DFE depends on the iterations parameter
(K) and the length of the training sequence (A).
Therefore, the effects of the iterations parameter
(K) and the length of training sequence (A) on
the BER performance are investigated. The slow
fading channel with a normalized Doppler fre-
quency of 0.00012 (f;=120) was assumed. This
implies that the minimum time between the two
fading nulls is 4.2ms (1/2f;) [11], which is much
longer than the considered maximum burst
length of 208us(this is in the case of A=64). The
SNR (Eb/No) was 18dB.

Figs. 1 and 2 show the BER performance of a
MTLMS based DFE as a function of the itera-
tions parameter (K) in F;(f) and ho(t), respec-
tively. It is shown that the performance is
improved as the value of K increases while the
computational complexity is proportional to K.
In hi{t), when Kis increased from one to four, a
large improvement is obtained. However, the
improvement is saturated when Kis further
increased. In h(t), since the FFF step size of 0.05
is not small enough to achjeve the stable MSE
performance, the BER performance is also not
stable. To achieve the stable performance, a
smaller FFF step size is needed. However, since
the large FFF step size can give the faster
converging performance and the smaller complex
multiplications, the FFF step size of 0.05 is hold.
In severely distorted channel, hy(t), a MTLMS
based DFE with the soft decision feedback shows
the better performance than a MTLMS based
DFE with the hard decision feedback at SNR of
18dB. However, in good channel, hi(t), the di-
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fferences of the performance are very slight. Fig.
3 shows the BER performance of a MTLMS
based DFE as a function of the length of the
training sequence (A) in both channel environ-
ments. It is shown that the performance becomes
better as A increases. The reason is that the
larger A gives the more sufficient channel in-
formation. But, note that spectral efficiency is
lowered as A increases. Figs. 4 and 5 show the
BER performance of a MTLMS based DFE as a
function of a slot-normalized Doppler frequency
in hi(t) and hy(t), respectively. As a normalized
Doppler frequency increases, the BER perfor-
mance becomes worse. Note that the perfor-
mance of a DFE with the largest X goes through
the faster degradation. The reason is that the

) L L s " .
4 5 6 7 8 g 10
The paramter K

' n
1 2 3

Fig 1. BER performance according to the iterations
parameter, K, in hi(t). Solid line: hard decision;
Dotted line: soft decision, Circle: 16 training:
Square: 32 training. ‘

BER

The paramter K
Fig 2. BER performance . according to the iterations
parameter, K, in hat). Solid line: hard decision;
Dotted line: soft decision, Circle: 16 training:
Square: 32 training.
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BER

D T I R
The length of the training sequence (A)
Fig 3. BER performance according to the length of
the training sequence, A,. K=4, Soft decision
feedback, Solid line: hi(t) Dotted line: hft).

R

by L
e o
1 2 3 4 5 6 7 8

:j//
Normalized Dappler frequancy (f, T) x 107

Fig 4. BER performance according to the normalized
Doppler frequency in hy(t). K=4, Soft decision
feedback, Solid line: 16 training: Dotted line: 32
training; Dashed line: 64 training.

1 2 3 : 3 3 7 B
Normalized Doppler frequency (i, T) PRI
Fig 5. BER performance according to the normalized
Doppler frequency in hoft). K=4, Soft decision
feedback, Solid line: 16 training; Dotted line: 32
training: Dashed line: 64 training.

TDMA slot with the larger K has a more chance
of a deep fade during a given transmit time and
the TDMA slot of a deep fade cannot be
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equalized reliably.

V. Conclusion

The MTLMS algorithm has mitigated the
problem of the slow convergence by using the
multiple-training method with a competitive
computational complexity in such short-burst
transmissions by using a short training sequence.
Soft decision feedback device can mitigate the
effect of error propagation and provide robust-
ness at low SNR. With these attractive features,
in this paper, a MTLMS based DFE method with
soft decision feedback was proposed and its
performance was investigated in mobile wireless
channels throughout the computer simulations.
Simulation results show that the better perfor-
mance can be achieved as the length of the
training sequence increases, but the spectral
efficiency is lowered and the system becomes
weaker to time-varying fading. The more trai-
ning sequencesare required in the higher norma-
lized Doppler frequency, and MTLMS with soft
decision feedback shows better BER performance
than the case of hard decision.
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