DOI QR코드

DOI QR Code

Screening of SrO-B2O3-P2O5 Ternary System by Combinatorial Chemistry and QSAR

조합화학과 QSAR를 이용한 SrO-B2O3-P2O5 3원계 청색형광체 개발

  • Yoo, Jeong-Gon (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Back, Jong-Ho (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Cho, Sang-Ho (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Sohn, Kee-Sun (Department of Materials Science and Metallurgical Engineering, Sunchon National University)
  • 유정곤 (순천대학교 신소재공학부) ;
  • 백종호 (순천대학교 신소재공학부) ;
  • 조상호 (순천대학교 신소재공학부) ;
  • 손기선 (순천대학교 신소재공학부)
  • Published : 2005.06.01

Abstract

It is known that $BaMgAl_{10}O_{17}:Eu^{2+}(BAM)$ phosphors currently used have a serious thermal degradation problem. We screened $SrO-B_2O_3-P_2O_5$ system by a solution combinatorial chemistry technique in an attempt to search for a thermally stable blue phosphor for PDPs. A Quantitative Structure Activity Relationship (QSAR) was also obtained using an artificial neural network trained by the result fiom the combinatorial screening. As a result, we proposed a promising composition range in the $SrO-B_2O_3-P_2O_5$ ternary library. These compositions crystallized into a single major phase, $Sr_6BP_5O_{20}:Eu^{2+}$. The structure of $Sr_6BP_5O_{20}:Eu^{2+}$ was clearly determined by ab initio calculation. The luminescent efficiency of $Sr_6BP_5O_{20}:Eu^{2+}$ was 2.8 times of BAM at Vacuum Ultra Violet (VUV) excitation. The thermal stability was also good but the CIE color chromaticity was slightly poor.

Keywords

References

  1. S. Oshio, T. Matsuoka, S. Tanaka, and H. Kobayashi, ' Mechanism of Luminance Decrease in $BaMgAl_{10}O_{17}$:$Eu^{2+}$ Phosphor by Oxidation,' J. Electrochem. Soc., 145 3903-08 (1998) https://doi.org/10.1149/1.1838891
  2. S. Oshio, K. Kitamura, T. Shigeta, S. Horii, S. Matsuoka, S. Tanaka, and H. Kobayashi, ' Firing Technique for Preparing a $BaMgAl_{10}O_{17}$:$Eu^{2+}$ Phosphor with Controlled Particle Shape and Size,' J. Electrochem. Soc., 146 392-98 (1999) https://doi.org/10.1149/1.1391620
  3. K. C. Mishra, M. Raukas, A. Ellens, and K. H. Johnson, ' A Scattered Wave Model of Electronic Structure of $Eu^{2+}$ in $BaMgAl_{10}O_{17}$ and Associated Excitation Processes,' J. Lumin., 96 95-105 (2002) https://doi.org/10.1016/S0022-2313(01)00417-3
  4. K.-B. Kim, Y-I. Kim, H.-G. Chun, T.-Y. Cho, J.-S. Jung, and J.-G. Kang, ' Structural and Optical Properties of $BaMgAl_{10}O_{17}$:$Eu^{2+}$ Phosphor,' Chem. Mater., 14 5045-50 (2002) https://doi.org/10.1021/cm020592f
  5. K.-S. Sohn, S. S. Kim, and H. D. Park, ' Luminescence Quenching in Thermally-Treated Barium Magnesium Aluminate Phosphor,' Appl. Phys. Lett., 81 1759-65 (2002) https://doi.org/10.1063/1.1504866
  6. A. Ellens, F. Zwaschka, F. Kummer, A. Meijerink, M. Raukas, and K. Mishra, ' $Sm^{2+}$ in BAM : Fluorescent Probe for the Number of Luminescing Sites of $Eu^{2+}$ in BAM,' J. Lumin., 93 147-53 (2001) https://doi.org/10.1016/S0022-2313(01)00180-6
  7. Y.-L. Liu and C.-S. Shi, ' Luminescent Centers of $Eu^{2+}$ in $BaMgAl_{10}O_{17}$ Phosphor,' Mater. Res. Bull., 36 [1-2] 109-15 (2001) https://doi.org/10.1016/S0025-5408(01)00507-4
  8. B. Howe and A. L. Diaz, ' Characterization of Host-Lattice Emission and Energy Transfer in $BaMgAl_{10}O_{17}$:$Eu^{2+}$,' J. Lumin., 109 51-9 (2004) https://doi.org/10.1016/j.jlumin.2004.01.019
  9. T. Justel, H. Lade, W. Mayr, A. Meijerink, and D. U. Wichert, ' Thermoluminescence Spectroscopy of $Eu^{2+}$ and $Mn^{2+}$ Doped $BaMgAl_{10}O_{17}$,' J. Lumin., 101 [3] 195-200 (2003) https://doi.org/10.1016/S0022-2313(02)00413-1
  10. K. Yokota, S.-X. Zhang, K. Kimura, and A. Sakamoto, ' $Eu^{2+}$-Activated Barium Magnesium Aluminate Phosphor for Plasma Displays-Phase Relation and Mechanism of Thermal Degradation,' J. Lumin., 92 [3] 223-27 (2001) https://doi.org/10.1016/S0022-2313(00)00246-5
  11. S. Oshio, T. Matsuoka, S. Tanaka, and H. Kobayashi, ' Mechanism of Luminance Decrease in $BaMgAl_{10}O_{17}$:$Eu^{2+}$ Phosphor by Oxidation,' J. Electrochem. Soc., 145 [11] 3903-08 (1998) https://doi.org/10.1149/1.1838891
  12. S. Kubota and M. Shimada, ' $Sr_{3}Al_{10}SiO_{20}$:$Eu^{2+}$ as a Blue Luminescent Material for Plasma Displays,' Appl. Phys. Lett., 81 2749-54 (2002) https://doi.org/10.1063/1.1512306
  13. J. Hao and M. Cocivera, ' Luminescent Characteristics of Blue-Emitting $Sr_{2}B_{5}O_{9}Cl$:Eu Thin-Film Phosphors,' Appl. Phys. Lett., 79 740-45 (2001) https://doi.org/10.1063/1.1391410
  14. K.-S. Sohn, J. M. Lee, and N. Shin, ' A Search for New Red Phosphor Using Computational Evolutionary Optimization Process,' Adv. Mater., 15 [22] 2081-87 (2003) https://doi.org/10.1002/adma.200305291
  15. K.-S. Sohn, I. W. Zeon, H. Chang, S. K. Lee, and H. D. Park, ' Combinatorial Search for New Red Phosphors of High Efficiency at VUV Excitation Based on the $YRO_{4}$ (R=As, Nb, P, V) System,' Chem. Mater., 14 2140-45 (2002) https://doi.org/10.1021/cm0109701
  16. K.-S. Sohn, J. M. Lee, I. W. Jeon, and H. D. Park, ' Combinatorial Searching for $Tb^{3+}$-Activated Phosphors of High Efficiency at Vacuum UV Excitation,' J. Electrochem. Soc., 150 H182-87 (2003) https://doi.org/10.1149/1.1591756
  17. C. H. Kim, S. M. Park, J. G. Park, H. D. Park, K.-S. Sohn, and J. T. Park, ' Combinatorial Synthesis of Tb-Activated Phosphors in the $CaO-Gd_{2}O_{3}-Al_{2}O_{3}$ System,' J. Electrochem. Soc., 149 H183-89 (2002) https://doi.org/10.1149/1.1518992
  18. S. Y. Seo, K.-S. Sohn, H. D. Park, and S. Lee, ' Optimization of $Gd_{2}O_{3}$-Based Red Phosphors Using Combinatorial Chemistry Method,' J. Electrochem. Soc., 149 H12-8 (2002) https://doi.org/10.1149/1.1425800
  19. S. Shionoya and W. M. Yen, ' Phosphor Handbook', CRC press, Boca Raton, 623-36 (1999)
  20. T. Hattori and S. Kito, ' Neural Network as a Tool for Catalyst Development,' Catal. Today, 23 [4] 347-52 (1995) https://doi.org/10.1016/0920-5861(94)00148-U
  21. M. Sasaki, H. Hamada, Y. Kintaichi, and T. Ito, ' Application of a Neural Network to the Analysis of Catalytic Reactions Analysis of NO Decomposition over Cu/ZSM-5 Zeolite,' Appl. Catal. A, 132 [2] 261-65 (1995) https://doi.org/10.1016/0926-860X(95)00171-9
  22. Z.-Y. Hou, Q. Dai, X.-Q. Wu, and G.-T. Chen, ' Artificial Neural Network Aided Design of Catalyst for Propane Ammoxidation,' Appl. Catal. A, 161 183-87 (1997) https://doi.org/10.1016/S0926-860X(97)00063-X
  23. Y. Watanabe, T. Umegaki, M. Hashimoto, K. Omata, and M. Yamada, ' Optimization of Cu Oxide Catalysts for Methanol Synthesis by Combinatorial Tools Using 96 Well Microplates, Artificial Neural Network and Genetic Algorithm,' Catal. Today, 89 [4] 455-61 (2004) https://doi.org/10.1016/j.cattod.2004.02.001
  24. U. Rodemerck, M. Baerns, M. Holena, and D. Wolf, ' Application of a Genetic Algorithm and a Neural Network for the Discovery and Optimization of New Solid Catalytic Materials,' Appl. Surf. Sci., 223 [1-3] 168-74 (2004) https://doi.org/10.1016/S0169-4332(03)00919-X