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FUZZY CONVERGENCE THEORY -1I

K. K. MONDAL AND S. K. SAMANTA

ABSTRACT. In this paper convergence of fuzzy filters and graded fuzzy filters have
been studied in graded L-fuzzy topological spaces.

0. INTRODUCTION

This paper is the continuation of our earlier paper (Mondal & Samanta [10])
where convergence of fuzzy nets has been studied. In this paper we deal with the
convergence of fuzzy filters. In 1979 a theory of convergence of fuzzy filters was
developed by Lowen [9] for laminated spaces and afterwards it was extended to
arbitrary fuzzy (Chang) spaces by Warren [13]. In 1995 Gahler [6, 7] introduced an
idea of graded fuzzy filter in lattice valued setting (which he called L-fuzzy filter)
and studied its convergence in Chang fuzzy topological spaces. Later on in the year
of 1999 Burton, Muraleetharan & Garcia [1, 2] considered another type of graded
fuzzy filter named as generalized filter (g-filter) by relaxing a condition imposed by
Gahlar [6, 7] but restricted themselves in I-fuzzy setting where I = [0, 1] and studied
relations among prime prefilters, prime g-filters and ultrafilters.

In this paper we study the convergence of both crisp fuzzy filters and graded
fuzzy filters in L-fuzzy setting, where the underlying fuzzy topological space is a
graded L-fuzzy topological space of the type as considered in Chattopadhyay, Hazra
& Samanta [4], Hohle (8], and Sostak [12].

In Section 2 we study the graded convergence of Warren type fuzzy filters (cf.
Warren [13]) and investigate its relation with the graded convergence of associated
fuzzy nets.
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In Section 3 we deal with the convergence of g-filters. In doing so we have
established decomposition theorem involving the convergence of a g-filter with the
convergence of a family of Warren type fuzzy filters. Relationship between the
convergence of g-filters and gp-mappings has been studied.

1. NOTATION AND PRELIMINARIES

In this paper X denotes a nonempty set; unless otherwise mentioned, L denotes
a completely distributive order dense complete lattice with an order reversing invo-
lution 7 whereas Ly = L ~\ {0}. Let 0 and 1 denote respectively the least and the
greatest elements of L. Let LX be the collection of all L-fuzzy subsets of X and
Pt(LX) the set of all L-fuzzy points of X. M(L) denotes the set of all molecules
of L whereas M (LX) denotes the set of all molecule points of LX. By 0 and 1 we
denote the constant L-fuzzy subsets of X taking values 0 and 1 respectively. For
pr € Pt(LX) and A, B € LX wesay p, QA ifp, ¢ A and AQBif A ¢ B'. For other
notations we follow Liu [14].

Definition 1.1 (Sostak [12]). A function 7 : LX — L is called an L-fuzzy topology
on X if it satisfies the following conditions:

(01) 7(0) =7(1) = 1,

(02) 7(A; A Ag) > (A1) AT(Ap), for Ay, Ay € L, and

(03) 7(Viea 4i) = Nica T(As) for any {A;}iea € LX.

The pair (X, 7) is called an L-fuzzy topological space and 7 is also called a gradation
of openness on X.

Definition 1.2 (Sostak [12]). A function F : LX — L is called an L-fuzzy co-
topology of X if it satisfies the following conditions:

(C1) F(0) = F(1) = 1,

(C2) F(A1V Ag) > F(A1) A F(Ap), for Ay, A; € L%, and

(C3) }'( Asea Ai) > Aica F(As) for any {Asbiea € L¥.

The pair (X,F) is called an L-fuzzy co-topological space and F is also called a
gradation of closedness on X.

Definition 1.3 (Mondal & Samanta [10]). Let (X,7) be an L-fuzzy topological
space and let Q : Pt(LX) x LX — L be a mapping defined by

Q(ps, 4) = \/{7(U); p- AU C A}.
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Then @ is said to be a gradation of Q-neighborhoodness in (X, 7).

Definition 1.4 (Mondal & Samanta [10]). Let (X,7) be an L-fuzzy topological
space and let Q : Pt(LX) x LX — L be a mapping defined by

Q(ps, A) = \/{r(U); p=QU C A}.
Then @ is said to be a gmdatzon of g-neighborhoodness.

Proposition 1.5 (Mondal & Samanta [10]). Let Q be a gradation of q-neighbour-

hoodness in an L-fuzzy topological space (X, 7). Then

(QN1): ¥ p; € Pt(LX), Q(ps,1) = 1, Q(ps,0) = 0.

(QN2): Q(pz, A) < Q(pz, B) if A,Be L*, AC B.

(QN3): V p, € Pt(LX) and V¥V A,B € L, Q(ps, AN B) = Q(pz, A) A Q(pz, B).

(QN4): Q(pz, A) £ k implies that there exists a B, € LX such that p, 4B, C A and
/\('ry qB,) Q(ry, Bp) £ k.

Proposition 1.6 (Mondal & Samanta [10]). Let Q : Pt(LX) x LX — L be a
mapping satisfying (QN1)~(QN3) of Proposition 1.5. Let 7 : L% — L be defined
by 7(A) = /\(pz q4) Q(pz,A). Then (X,7) forms an L-fuzzy topological space. If
further the condition (QN4) of Proposition 2.4 is satisfied by Q then the mapping
Q : Pt(LX) x LX — L defined by

Q(p=, A) = \/{7(U); p=qU C A}
is identical with Q.
Proposition 1.7 (Mondal & Samanta [10]). Let Q be a gradation of 4-neighbour-

hoodness in an L-fuzzy topological space (X,7) and 7 : LX — L be defined by
T(A) = V(pqu) Q(pz, A) then T is an L-fuzzy topology on X and 7 =T.

Definition 1.8 (Mondal & Samanta [10]). Let (X,7) be an L-fuzzy topological
space and e € Pt(L%X). The Q-neighborhood system of the fuzzy point e with
respect to the Chang fuzzy topology 7., denoted by Qr(e), is defined by Qr(e) =
{U e LX; 3V €7, satisfying eqV C U}.

Definition 1.9 (Mondal & Samanta [10]). Let (X,7) be an L-fuzzy topological
space and N : Pt(L¥) x LX — L be a mapping defined by

N(pz, A) = \/{r(U); p. € U C A}.
Then N is said to be a gradation of neighborhoodness in (X, 7).
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Definition 1.10. Let (X, 7) be an L-fuzzy topological space and e € Pt(LX). The
neighborhood system of the fuzzy point e with respect to the Chang fuzzy topology
7r, denoted by N,(e), is defined by

Ny(e) ={U € L*; 3V e, satisfying e € V C U}.

Definition 1.11 (Liu [14]). Let L be a complete lattice. Define a relation ¢ <<’ in
L as follows: Va,be L,a<<bifandonlyif VSCL, \/S>b = Jse€ Ssuch
that s >a, V a € L, denote B(a) = {b € L;b << a}, 8°a) = M(B(a)).

Definition 1.12 (Chattopadhyay, Hazra & Samanta [4]). Let (X,7) and (Y,4) be
two L-fuzzy topologies and f : X — Y be a mapping. Then f is called a gradation
preserving map (gp-map) if for each B € LY,§(B) < 7(f~1(B)).

2. Fuzzy FILTER AND ITS CONVERGENCE

Definition 2.1. Let X be a nonempty crisp set. A fuzzy filter on LX is a non-empty
family G of L-fuzzy subsets of X such that

(i) 0¢6,

(i1) G is closed under finite intersection, and
(i) VA,Be LX if B€Gand BC Athen A€G.

Ezample 2.2. Let (X, 7) be an L-fuzzy topological space with 7 as a gradation of
openness on X, e € M(LX). Then, for every r € Ly, Q-(e) and N,(e) are fuzzy
filters on LX.

Ezample 2.3. Let X be an infinite crisp set then for each r € Ly the collection
{A € LX; Al is finite} is a fuzzy filter on LX where A, is the r'-cut of A’.

Definition 2.4. Let (X,7) be an L-fuzzy topological space G C LX be a fuzzy
filter on L¥X, e € Pt(LX). Then e is called a cluster point of G of upper grade |
(respectively, lower grade k), denoted by G oc! e (respectively, G ooy €), if

l':/\{rELo; UNA#0, VU € Q,(e) and 4 € G}
(respectively, if

K = \/{r € Lo; 3U € Q-(e) and 3 A € G such that ANU = 0}).
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And e is called a limit point of G of upper grade | (respectively, lower grade k), de-
noted by G —' e (respectively, G — e), if ' = A{r € Lo; Q-(e) C G} (respectively,
k'=V{r € Lo; Qr(e) £ G}).

Proposition 2.5. For any fuzzy filter G in an L-fuzzy topological space (X, 1), we
have the following properties.

(i) Goole and Goop e = k ¥ L.

(i) G =teand G —re = k#L

Proof. (i) Let U = {r € Lo; YU €Q,(e) and VV € G,UNV #0} and V = {r
Lo; 3 UeQ(e), VeG UNV =0}. Then obviously YNV =@ and YUV = L.
Also from the definition of limit points of upper grade and lower grade of a fuzzy
filter we have I' = AU and k' = \/ V. If AU > \/V then there exists m € Ly such
that AU>m >VV = m¢U and m €V, which is contradictory to the fact that
UUV = Lgy. So, "= AU >\ V =F is not possible. This implies k } I.

(ii) Similar to (i). O

Proposition 2.6. If L be an order dense chain then, in an L-fuzzy topological space
(X, 1), we have the following properties.

(i) Goole and Goore = k=I.

(ii) G —-le and G —ke = k=1

Proof. (i) As in Proposition 2.5, if we consider the partitions ¢ and V of Ly and
U= AU,k =\ V then we have k <. If possiblelet k < {thenk’ >1' = Im € Lg
such that ¥ >m >0 = VV>m> AU = m €V and m € U, which is
contradictory to the fact that Y NV = &. Hence k £ 1.

(ii) Similar to (i) 0O

Note 2.7. If in addition L is a chain then in the L-fuzzy topological space (X, 1), as
there is no difference between G oo e and G oo; e so they will be commonly denoted
by G 0o(l) e. Similarly, G —! e and G —, e will be commonly denoted by G —(l) e.

Proposition 2.8. Let (X,7) be an L-fuzzy topological space with T as a gradation
of openness on X, G C LX be a fuzzy filter on LX, e € Pt(LX). Then, for k € L,
we have

(i) G =k e = Goole for some 1>k,

(ii) Gooke> f = G oot f for somel >k,

(ii) G =% e> f = G —! f for somel >k,
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(iv) Goor e = G —y e for somel <k,
(v) Goope< f = Gooy f for somel < k, and
(vi) G —re< f = G- f for somel <k.

The proof is straightforward.

Definition 2.9. Let (X,7) be an L-fuzzy topological space and G, H be any two
fuzzy filters on LX. Say H is finer than G or subfilter of G, or say G is coarser than

Hif G CH.

Proposition 2.10. Let (X,‘T) be an L-fuzzy topological space and G, H be fuzzy
filters on LX, M be coarser than G, e € Pt(LX). Then, for k € L, we have
(i) H—-ke = G —le for somel >k,
(i) Gook e = Hoole for somel >k,
(i) H —»x e = G —ye for somel <k, and
(iv) G oo e = H ooy e for somel < k.

Proposition 2.11. Let (X,7) be an L-fuzzy topological space, G be a fuzzy filter on
LX, A be the collection of all subfilters of G, e € Pt(LX). Then we have

(i) G ote = I=Apea{reL; H-"¢},

(il) Goole = 1= Vyea{reL; Hoo e},

(iil) Goo(l) e = I =Vyea{r € L; H— (r)e}, if L is a chain,

(iv) G oo(l) e = 3 a subfilter H of G such that H — (l)e if L is a chain,

(v) G—i1e = l=Apea{r € L; H —y e}, and

(vi) Goope = 1= \yealr € L; Hoop e}
Proof. (i) For, any H € A, H —" e and G —' e implies 7 > [, so

1< /\{TEL; H —" e}
HeA

Again as a particular case taking H = G we get | > Ayca{r € L; H —" e}. Hence
the proof follows. '

(ii) Similar to (i).

(iii) Let H be a subfilter of G such that H — (r)e. Then, for every s > 7/,
Qs(e) € H. So, U € Q,(e) and V € G implies U,V € H since Qs(e),G C H. This
implies U NV # 0.

So, for some l > r, G oo(l) e. Agair as H is any subfilter of G, so G co(l) e =

> \/ {reL; H— (r)e}.
HeA
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Next let G oo(l) e in (X,7) and let B = GU (U, 5y Qm(e)). Then Uh,U; €
Ui Qm(e) implies that there exists a m;,mg € Ly such that mi,mg > !’ and
Uy e le (e) and U; € sz(e).

Without loss of generality let m; > mg then Uy, Us € sz (as le(e) - Q~m2 ().
So, '

U1NU; € Qmy(e) = 1Nz € | Qmle),

m>l
i ey Umsir Qm(e) has the finite intersection property. G being a fuzzy filter, also
has the finite intersection property.

Again G oco(l) e implies that, for all m > I', U € G and V € Qm(e) means
UNV #0. Therefore B=GU (Ut Qm(e)) has the finite intersection property.
AsO0¢Gand 0 ¢ Unestr Qm(e), so 0 & B. Denote the filter generated by B as 1B.

So, 1B is a subfilter of G. Let H = 1B then, for all m > I, Q,(e) C H. This
implies that, for some r > [, H — (r)e.

The proofs of (iv)-(vi) are straightforward. O

Definition 2.12. Let (X, 7) be an L-fuzzy topological space, S be a molecule net
on LX, G be a fuzzy filter on LX. For S we define the fuzzy filter associated with the
net S as the family G(S) of all fuzzy subsets of X with which the net S eventually
quasi-coincides. For G, let D(G) = {(e, A) € M(L*) x G; eq A} and equip D(G)
with the relation < on it as V (e, A), (d,B) € D(G), (¢,A) < (d,B) <= ADB.
Define the molecule net associated with the fuzzy filter G as the mapping S(G) :
D(G) — M(LX), defined by S(G)(e, A) = e V (e, A) € D(G).

Definition 2.13 (Mondal & Samanta [10]). Let (X,7) be an L-fuzzy topological
space and e € Pt(LX). Let D be any directed set and S : D — Pt(LX) be any fuzzy
net. For U € LX if 3 m € D such that S(n)qQU V n > m holds then we say

SqU eventually;

if, for every m € D, there exists n € D such that n > m and S(n)qU then we
say SQU frequently. Call e a cluster point with upper grade I, denoted by S oo’ e
(respectively, a cluster point with lower grade k, denoted by S ooy, e) of a fuzzy net
S : D — Pt(LX), if

I'= /\{7' €Ly, VU € Qr(e), U qS frequently}

(respectively, if k' = \/{r € Lo; 3V € Q.(e) such that V ¢ S eventually}). Call e
a limit point of upper grade I of S, denoted by S —! e (respectively, a limit point of
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lower grade k of S, denoted by S — ) if
I'= /\{r € Lo; YU € Q.(e), UQS eventually}
(respectively, k' = \/{r € Lo; 3V € Q-(e) such that V ¢ S frequently} ).

Proposition 2.14. Let (X, 1) be an L-fuzzy topological space, G be a fuzzy filter on
LX, S be a molecule net in LX, e € Pt(LX). Then, for k € L, we have the following

properties.

Proof. (i) S —Fe <= K = \{r € Lo; YU € Qr(e), SQU eventually}
= k= /\{T € Ly; VU € Qr(e)’ Ueg(S)}
< Kk = N\{r € Lo; Q:(e) CG(5)}
= G(S) =Fe.
Similarly, we can prove the other results. a

Proposition 2.15. Let (X, 7) be an L-fuzzy topological space, G be a fuzzy filter on
LX S be a molecule net in L%, e € Pt(LX). Then, for k € L, we have the following
properties.

(i) S —ope Q(S) —rk €.

(i) G —=re < S(G) —ke.

(i) G ook e <= S(G) oo €.

(iv) Soop e = G(S) oo; e for some l > k.

Proof (i) S —re <= Kk =V{r e Ly; 3U € Q,(e) such that S gU frequently}
— kK = V{r € Ly, 3U € Q(e) such that U ¢ G(S)} < K = V{r e
Lo; Qr(e) £G(8)} <= G(S) —xe.

(i) G ore = K =V{reLo Qrle) G}

Now Q.(e) € G = 3 U € Q,(e) such that U ¢ G. Then, for every (f,V) €
D(G), U2 V.

NowU 2V = U' V' = Ize X such that U'(z) £ V'(z). As M(L) is a
join generating subset of L so there exists k € M(L) such that U'(z) > k £ V'(x)
= ky € M(IX)and ky € U'but ks € V! = ko AV but ke AU = (ks, V) € D(G).
Again (k;,V) > (f,V) but S(G)(kz,V) =k; AU = S(G) 4U frequently.



FUZZY CONVERGENCE THEORY -1II 113

Conversely, if U € G then for all (f,V),(g,U) € D(G) with (f,V) > (g9,U)
we have V C U. Now fQV and hence fqU. So, [S(G)(f,V)]aU i.e., S(G)AU
eventually. Hence S(G) dU frequently = U € G = Q,(e) Z G. So, U € Q,(e) and
S(G) 4U frequently = Q,(e) € G. So, we can say now that

Q-(e) 2 G <> 3 U € Q,(e) such that S(G) 4U frequently.

Hence,

\/{r € Lo; Qr(e) Z G}
= \/{'r € Lo; 3 U € Q,(e) such that S(G) 4U frequently},

i.e,Gore < S(G) —oe.

(iii) Let, for some r € Lq there exists U € Q,(e) andV € G such that U NV = 0.
Take (f,V) € D(G). We shall show that for all (g, W) € D(G) if (9, W) > (f,V)
then S(G)(g9, W) dU. Suppose S(G)(g, W)QU, then gqQU. Again

(W)= (f,V) = gaW CV,

so gQV. Therefore g € M(LX), gQU and gqV = ga(UNV) = UNV #0, a
contradiction.

Next let for some r € Ly 3U € Q,(e) such that S(G) 4 U eventually. Then, there
exists (f,V) € D(G) such that, for all (g, W) € D(G), (9, W) > (f,V). This implies
S(G)(g,W)YdU, i.e,gdU.

Therefore for all gqV as (g,V) > (f,V) so S(G)(9,V) 4dU, i.e, gdU, ie,
VY ¢gqV, gdU. So, UNV = 0. Thus (iii) is proved.

(iv) Let U € Q.(e) and V € G(S) be such that UNV = 0. Now V € G(S) =
SqV eventually = Im € D such that Vn > m, S(n)qV. We shall show that S g U
eventually. Suppose SQU frequently, then 3 p € D such that p > m and S(p)qQU.
Now S(p)qV, S(p)qU and S(p) € M(LX) = S@AUNV)=>UNV £0, a
contradiction.

Thus for U € Q,(e), V € G(S) if UNV =0 then S U eventually. So,

'=\/{r€Lo; 3U € Qs(e), 3V €G(S); UNV =10}
< \/{7” € Lo; 3U € Q.(e) such that S U eventually} = ¥/,

i.e., G(S) oo e = S oo e for some k < [. O
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Definition 2.16 (Mondal & Samanta [10]). Let (X, F) be an L-fuzzy co-topological
space with F as a GC on X. For each A € LX we define

c(4,r)= N\{De L*;AC D; De 7}

where F, = {C € L¥X;F(C) > r}. The operator cl is said to be L-fuzzy closure
operator in (X, F).

Definition 2.17 (Mondal & Samanta [10]). In an L-fuzzy topological space (X, ),
Pz € cl(4,m)
if and only if, for all U € 7, p, AU = U QA.

Proposition 2.18. Let (X,7) be an L-fuzzy topological space and A € LX; e €
M(LX). Then e € cl(A, k') implies that there exists a fuzzy filter G on LX such that
A' ¢ G and for somel >k, G —! e}.

Proof. Let e € cl(A, k). Then for every U € Qu(e),UdA (by Proposition 2.17),
i e., for every U € Qp(e) I 2* € X such that U(z¥) £ A'(z%) = A(z*) £ U'(z¥).
As M(L) is a join generating subset of L so 3 p* € M(L) such that A(z*) > p* £
U'(z*) = pY% € M(LX) and p%. QU and p¥. € A.

As e € M(LX) so Qu(e) is a directed set with respect to the relation ¢ >’ defined
byVUV € Qk/(e), U>V <« UCYV. Sowe define a molecule net S : Qu(e) —
M(LX) by S(U) = p¥. Then § is a molecule net in A and as V U € Qx(e), UQ A
soV U € Qu(e), UQS eventually, which implies A{s € Lo; Y U € Qs(e), UAS
eventually} < k' = S —! e for some | > k.

Now, for the associated filter G(S), by (i) of Proposition 2.14, G(S) —! e. If
A’ € G(S) then S eventually quasi-coincides with A’ (i. e., S is eventually not in A),
this contradicts the fact that S is a fuzzy net in A. So, A’ & G(S5). O

Definition 2.19. Let X be nonempty crisp set. A nonempty subfamily A C LX is
called a filter base on LX, if 0 ¢ A and A is closed under finite intersection. For a
filter base A on LX, denote the filter generated by A as 1A.

Definition 2.20. Let (X,7) be an L-fuzzy topological space, A a filter base on
LX. An L-fuzzy point e € Pt(LX) is called a cluster point of A with upper grade k,
denoted by A oo® e (respectively, a cluster point of A with lower grade [, denoted
by A oo e) if 14 0ok e (respectively, if 14 oo; €); e is called a limit point of A with
upper and lower grades m and n, denoted by 4 —™ e and A —,, e respectively if

1A —>™eand 4 —, e
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Proposition 2.21. Let (X, 1) and (Y,9) be any two L-fuzzy topological spaces and
let f:(X,7) — (Y,8) be a gp-map then for any filter base A in (X,7) andV e €
Pt(LX), A—te = f[A] —F f(e) for some k > L.

Proof. Let Qr(e) and QT( f(e)) be the d-neighborhood systems of e and f(e) with
respect to the Chang fuzzy topologies 7, and §, respectively. Suppose A is a filter
base in (X,7), e € Pt(LX) and A —! e. Let Qr(e) CTA. Then VV € QT(f(e)),
since f is a gp-map, f~1(V) € Q-(e) = 3 A € A such that f~}(V) 2 A.

Therefore V 2 ff~1(V) D f(A) € fl[A] = V € flA]. 0O

Proposition 2.22. Let f : (X,7) — (Y,68) be a mapping where (X,7) and (Y,6)
be any two L-Fuzzy topological spaces. If, for any fuzzy filter base A and for any
e € M(LX),

A—Fe = f[A] - f(e) for some [ > k,

then f is a gp-map.

Proof. Suppose f be not a gp-map, then 3 V € LY such that 7(f~1(V)) 2 6(V).
Therefore from the order dense property of L we get k;,k2 € L such that

T(fTH V) 2 k1 < k2 < 8(V).

Now we have

(1) 2k

/\eqf—l(v){Q(e,f‘l(V)% ee M(LX)} £ ka

3 €0 € M(LX) such that e q f~1(V) and Q(°, f~1(V)) # &

V{r(U); €2aU C f71(V)} % b

VU e LX with 7(U) > k1 and €°QU, U € f1(V)

V) € Qi)

FIHV) & f(Qr (€9))-

For, if f~(V) & Qx, (€°) but ff~1(V) € F(Qx, (%)) then 3 W € Qf, () such that
FFHV) = f(W),

ﬂ

A A

V2 V) = f(W)

= V)2 W= fUV) € Q(e0) (ase® € M(LX) = Qr, (€9) is a fuzzy filter),
a contradiction. So, f71(V) ¢ le (e9).

Hence

V2 V) € F(Qr (%) (1)
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Again 29 f~1(V) = f(e®)QV and we have 6(V) > ko. So,
V € Qi (f(e"). (2)
So, by (1) and (2), we have f(Qk, (¢%)) 2 Q%,(f(e°)). This means if
FI@k ()] =1 F(9)

then I’ > ky. But from the definition of convergence we have if Qg,(¢°) —* € then
k > ki. This implies &’ < k;.

Therefore ! > kg > k1 > k' = | < k, a contradition to the given condition.
Hence f is a gp-map. 0

3. LAaTTICE VALUED GENERALIZED FILTER

Definition 3.1 (Burton, Muraleetharan & Gutiérrez [1]). Let G : LX — L be a
mapping satisfying

(GF1) 6(0) =0; 6(1) =1,

(GF2) V A1, Ay € LK, G(A1 A A2) > G(A1) AG(Ag), and

(GF3) Y A,Be LX, G(B) > G(A)if AC B,

then G is said to be a generalized filter (g-filter) on LX.

Ezxample 3.2. Let @ be the gradation of 9-neighborhoodness in an L-fuzzy topolog-
ical space (X, 7), e € M(LX). We define a mapping Q. : LX — L by
Qe(U) = Q(e,U), YU € L*.
Then Q. is a g-filter on LX.
Ezample 3.3. Similarly the mapping N, : LX — L for a particular e € Pt(LX),

defined by N,(U) = N(e,U), YU € L¥ is a g-filter on LX where N is the gradation
of neighborhoodness in an L-fuzzy topological space (X, 7).

Ezample 3.4. Let X be an infinite crisp set and let G : LX — L be defined by
G(A) = V{r € Lo; A'[r'] = finite} where A’[r] is an r’-cut of A’, then G is a g-filter
on LX.

Definition 3.5. Let G and H be any two g-filters on LX. We say G is coarser than
‘H or H is finer than G if G < H. In this case H is also called a subfilter of G.
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Definition 3.6. Let G be a g-filter in an L-fuzzy topological space (X,7) and
e € Pt(LX) Call e a limit point of G, denoted by G — e if Q(e,U) < GU) VU €
LX, where @ is the gradation of Q-neighborhoodness in (X, 7). Denote the join
of all limit points of G by limG. Call e a cluster point of G, denoted by G oo e
if G(A) £ Q'(e,U) = ANU # 0, Y A, U € LX, where Q is the gradation of
9-neighborhoodness on (X, 7). Denote the join of all cluster points of G by clugG.

Proposition 3.7. In an L-fuzzy topological space (X, ) for any g-filter G and, for
e, f € Pt(LX), we have

(i) G — e = Gooe; if L is complemented,

(ii) Gooe>f = Goo f, and

(i) Goe>f = G f.

Proof. (i) Let G — e and let G(A) £ Q'(e,U) for some A, U € LX. Then from the
order dense property of L 3 k € M(L) such that G(A) > k £ Q'(e,U) = G(A) > k
and Q(e,U) £ k.

Again Q(e,U) £ ¥ = 31 € M(L) such that Q(e,U) > 1 £ k’. So,

G(ANU) > G(A)AGWU) by (GF2)
> G(A)AQ(e,U) (as G —e)
> kAL

Now [ <1=kVEK (as L is complemented) =l < kor! <k (asl € M(L))
=1 < k(asl £ k' is assumed). So, kAl =1>0(asl £ kK =1 >0) =
G(ANU)>0 = ANU #0, by (GF1) = G e.

(ii) Let G co e > f and let G(A) £ Q'(f,U) for some A, U € LX. Then as
e > f=QU) 2 Qf,U). So, (f,U) =2 Q'(e,U) = G(A4) £ Q'(e,U) =
ANU#0 (asGooe) =G oo f.

(iii) The proof is straightforward. O

Proposition 3.8. In an L-fuzzy topological space (X,7) if H is finer than G and
pe € Pt(LX) then, we have
(i) limG < cluG if L is complemented,
(i) pr EcluG <= Goop;, ifL isa chain,
(iil) p €imG <= G — pg, if L is a chain,
(iv) Hoopz = G o0 pg,
(v) cluG > cluH, and
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(vi) limG < limH.

Proof. (i) is clear.

(i) G 0 p; = pg € clug is clear.

Let p, € cluG and suppose G o6 p;. Then 3 A,U € LX such that G(A4) £
Q' (pe,U) but ANU =0.

Now G(4) £ Q'(ps,U) = G'(4) Z Qp,U) §'(A) Z V{r e Lo; U € Qr(pz)} =
3 s € Ly such that s £ G'(A) but U € Qs(pz).

Now U € Qs(p;) = 3V € 75 such that p, qV C U. Againp, 4V = p £ V'(z)
= 3¢ € Ly such that p > t £ V'(z) (since L is order dense ), i.e., t,9V C
U = UeQs(ty) = Q(t,U) > s. As L is a chain so G oo t, from the definition of
cluG. Now G'(A) # s = G(A) £5' > Q'(t;,U) = G(A) £ Q'(tz,U) = ANU # 0,
a contradiction.

(iii) Similar to (ii).

Proofs of (iv)—(vi) are stréightforwa,rd. O

Proposition 3.9. Let G be a g-filter on LX and let G, = {U € LX; G(U) > r} then

(1) for every r € Lo, G, is a fuzzy filter on LX,
(2)Vrse€e Ly, G- CGsifr>s, and

() NicaGri = Gy,ear-

Proof. (1) (1) Wehave G(1)=1 = G, # ¢V r € L.
(i) G0)=0 = 0¢ G, Vre L.
(i) U1, U2 € G, = GU;)) >r; i =1,2
= G(U1 NU) > G(U1) AG(U2), by (GF2)
>r
= U1 AUz €G,, V1€ L.
(iv) Let U € G, and U C V then
G(V) 2 G(U), by (GF3)
>T
= Veg, Vrel.
Hence G, is a fuzzy filter on LX.
(2) The proof is straightforward.
B) A€Niealr, &= Vie A AcG, & Viel GA) > <
G(A) > Vieari &= A€ Wicari- 50 Niea Ori = Gy O

ieaTi’
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Proposition 3.10. Let for each r € Lo, G, be a collection of L-fuzzy subsets of X
satisfying conditions

(1) G, is a fuzzy filter on LX for each v € Lo, and

(2) For allr,s € Lo, G, C Gs ifr > s,

then the mapping G : LX — L, defined by G(A) = \/{r € Lo; A € G,} is a g-filter
on LX. If further {Gr}rer, satisfies Condition (3) of Proposition 3.9, then, for
allr € Ly, G, =G, = {U € LX; GU) >r}.

Proof. (1) (i) Since V r € Lo, Gr is a fuzzy filter on L%, it follows that G(0) = 0
and V r € Lo, G, # 6. So, G(1) = 1. _
(ii) A€ G, A2 € G, = A1, A2 € Grinm (by (2)) = A1 N A € Grprr, =
G(A; N Ag) > ry Arg. As L is completely distributive so
G(A1 N A2) > G(A1) AG(As).

(iii) Let A C B. Then for r € Ly, A€ G, = B € G,. So, G(B) > G(A).
(2) Now we shall show thatVr € Lo, G, = G,. Infact A€ G, = V{k; A€ Gy} >
= G(A)>r = A€G,. So,forallr € Ly, G, C Gr. Again B€ G, = G(B)>r
= V{k € Ly; BeEGr}>r. Let S={k € Lyp; BE Gy} thenforal k€S, BEe€G.
So, B e nkeS Gy = kaesk = Gy, where ¥’ >r C G,. So, Be G, = G- C G,. O

Proposition 3.11. Let G be a g-filter on an L-fuzzy topological space (X, 7) and let
e € Pt(LX) then

VreLy, G—e = G —'e forsomel>r'.

Proof. G — e = G(U) > Q(e,U)VU € LX = G, 2 Qr(e) =
= N\{s €Ly Qs(e) CG} <.
Therefore G, —' e for some | > . O
Proposition 3.12. Let G be a g-filter on an L-fuzzy topological space (X,7) and
e € Pt(LX). If for every r € Ly, Gr — € for some k > 1’ then G — e.
Proof. Let the given condition be satisfied. To show
G(U) 2 Qe,U), VU € L¥,

suppose, for some U € LX, G(U) # Q(e,U), i.e., G(U) 2 V{r(V); eqV CU}.
Gu) 2 V{r(V); eaV c U}
= 3V € LX such that eqV C U and 7(V) £ G(U)
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= Ja,B € Lo such that G(U) 2 a < B < 7(V) (since L is order dense)
= U & G, but 7(V) > 8 means U € Qp(e).
Therefore

Qp(e) Z Ga (*)
Now according to the given condition G, — e for some k > o/ where
K =\/{s € Lo; Qs(e) Z Ga}-
= k'>0,by (x) = k' >8>a = k<, acontradiction. a

Proposition 3.13. Let G be a g-filter on an L-fuzzy topological space (X, T) and let
e € Pt(LX) thenV r € Ly, Gooe = G, ook e for some k > 7.

Proof. Let G oo e and suppose 3 r € Ly such that for no k(> r), G, cox e. Then
Grooge = kP(r = K &£r =

\{s€ Ly 3U€Qs(e), IAE€G; ANU =0} £ 7'

= JseLgsuchthat s £+ and 3 U € Qs(e), 3 A € G, such that ANU = 0.
Now U € Qs(e) and A € G, = Q(e,U) > s and G(A) > r = Q'(e,U) < &

and G(A) > r. Therefore, s £ ' = s’ ?r= Q(e,U) 2 G(A) but ANU =0, a

contradiction to the fact G oo e. a

Proposition 3.14. Let G be a g-filter on an L-fuzzy topological space (X,7) and
e € Pt(LX). If for every r € Ly, G, ooy e for some k > r then G oo e.

Proof. Let the given condition be satisfied. To show G oo e, suppose G /oo e. Then
3 A,U € LX such that G(A) £ Q'(e,U) but ANU = 0. Therefore

G(4) £ Q'(e,U)

= Ja € Lgsuch that G(A) > a £ Q'(e,U) (from the order dense property of L)
= G(A) > aand Q(e,U) £ . |

Now

G(A) >a = A€ Gyand Qe,U) £ o
= \/{r € Lo; U € Qr(e)} £ o (from the definition of Q(e,U) )
= 3 B € Lo such that 8 £ & and U € Qp(e).
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Therefore,
A€Gy, UecQple) but ANU =0and f £ o
= \/{reLy 3UeQrle), 3A€Ga; ANU=0}28%0.

Let ¥ = \/{r € Lo; 3U € Qr(e), 3A € Go; ANU = 0} then G, oop e where
K'>pB«d = G, oo e where k' £ o i.e., k # a which is contradictory to the

given condition. 0]

Lemma 3.15. Let (X,7) and (Y,8) be any two L-fuzzy topological spaces and f :
(X,7) — (Y,6) be any mapping then f~1(B1N By) = f~1(B1) N f~1(Bz).

Proof. For all x € X,
f7H(B10 By)(2) = (B1 N By)f(2)
= Bi(f(z)) A B2(f(2))
= [f71(BY@)] A [f7H(B2)(2)]
= [f71(B1) N f7H(B2)](x)-
Hence the proof. O

Lemma 3.16. Let (X,7) and (Y,6) be any two L-fuzzy topological spaces and let
Q,Q be the gradation of g-neighborhoodness in (X,7) and (Y,8) respectively. A
mapping [ : (X,7) — (Y, ) is a gp-map if and only if

Vee M(LXYandV V e LY, Q(e, f~1(V)) > Q(f(e), V).
Proof. We have Q(f(e), V) = V{§(W); f(e)aW C V}. Now
f@aAW CV = eqaf {(W)C fH(V) and r(f~H(W)) = §(W),
as f is a gp-map. So, V{r(U); eqU C f~1(V)} > V{6(W); f(e)aW C V}. So,
Qle, fX (V) > Q(f(e),V),Vee M(L*)andV V € LY.

Conversely, let Q(e, f~1(U)) > Q(f(e),U), Ye € M(LX)and VU € LY and suppose
f be not a gp-map. Then 3 at least one U € LY such that 7(f~1(U)) # §(U).
Therefore, by Propositions 1.5, 1.6 and 1.7, we have

MNQ@a, F7H(U); po € M(LX) and p, 9 f~1(U)}
2 \{Q(ry,U); 7y € M(LY) and r, qU}
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= 3 p, € M(L¥) such that p, a4 f~1(U) and Q(pe, f 1 (U))
2 N\{Q(ry,U); ry € M(LY) and r, QU}
= Qps, fH(U)) 2 Qry,U), ¥y € M(LY) with r, qU.
This implies

Qlps, S7HU)) 2 QUf (p),U)
(since p, € M(LX) and p, A f"1(U) = f(ps) € M(LY) and f(p.) QU ), which is a
contradiction. Hence the proof. O

Definition 3.17. Let (X, 7) and (Y, ) be any two L-fuzzy topological spaces and
f:(X,7) — (Y,6) be any mapping and G be any g-filter on X, we define
fI6)(B) =G(f7(B)), VBe L". ,

Proposition 3.18. Let (X, 7) and (Y,6) be any two L-fuzzy topological spaces and
f:(X,7) — (Y,0) be any mapping then for any g-filter G on (X, 7), f[G] is a g-filter
on (Y,6).
Proof. (1) As we know f~}(0y) = 0x and f~!(1y) = 1x so,

F16)0y) = G(F*(0y)) =G(0x) =0 and f[G](Iy) = G(f'(Iv)) = 6(1x) = L.

(2) fIG(B1NB2) =G(f Y (BiNBy)) > G(f*(Bi)Nf Y(Bz)), by Lemma 3.15 and
(GF3). Therefore, by (GF2),

fIG1(B1NBy) 2 G(£71(B1)) AG(£71(B2)) = fIG)(B1) A f[G)(Bz)-
(3) BLC By, = f"Y(B1)Cf ( 2), ¥ B1,Bs € LY. Then, by (GF3),
FIG)(B2) = G(fH(B2)) 2 G(f1(Bv)) = fIG)(B).
Hence f[G] is a g-filter on (Y, ). O
Proposition 3.19. Let (X,7) and (Y,0) be any two L-fuzzy topological spaces and
f:(X,7) = (Y,8) be a gp-map then, for any g-filter G and for any e € Pt(LX),
G—e = f[G] = fle)
Proof. Let @ and Q be the gradations of g-neighborhoodness in (X,7) and (Y,6)
respectively and let B € LY, then
G(f1(B) 2 Qe, f71(B)) [asG — e
> Q(f(e), B),
by Lemma 3.16. This implies f[G](B) > Q(f(e), B). a
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Proposition 3.20. Let f: (X,7) — (Y,0) be a mapping where (X,7) and (Y,8) be
any two L-fuzzy topological spaces. If, for any g-gilter G and for any e € M(LX),

g—e = flG]— fle)
then f is a gp-map.

Proof. Let Q and @ be the gradations of q-neighborhoodness in (X,7) and (Y, )
respectively. As e € M(LX) so the mapping Q. : LX — L given by Q.(U) =
Q(e,U) is a g-filter on LX and Q. — e. So, according to the given condition
flQel = f(e). S0,V V € LY, f[Q(V) 2 Q(f(€),V) = Qe(f71(V)) 2 Q(f(e),V)
= Qle, fH(V)) 2 Q(f(e), V). |

Hence, by Lemma 3.16, f is a gp-map. O
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