FUZZY CONVERGENCE THEORY-II

K. K. MONDAL AND S. K. SAMANTA

ABSTRACT. In this paper convergence of fuzzy filters and graded fuzzy filters have been studied in graded L-fuzzy topological spaces.

0. Introduction

This paper is the continuation of our earlier paper (Mondal & Samanta [10]) where convergence of fuzzy nets has been studied. In this paper we deal with the convergence of fuzzy filters. In 1979 a theory of convergence of fuzzy filters was developed by Lowen [9] for laminated spaces and afterwards it was extended to arbitrary fuzzy (Chang) spaces by Warren [13]. In 1995 Gahler [6, 7] introduced an idea of graded fuzzy filter in lattice valued setting (which he called L-fuzzy filter) and studied its convergence in Chang fuzzy topological spaces. Later on in the year of 1999 Burton, Muraleetharan & Garcia [1, 2] considered another type of graded fuzzy filter named as generalized filter (g-filter) by relaxing a condition imposed by Gahlar [6, 7] but restricted themselves in I-fuzzy setting where I = [0, 1] and studied relations among prime prefilters, prime g-filters and ultrafilters.

In this paper we study the convergence of both crisp fuzzy filters and graded fuzzy filters in L-fuzzy setting, where the underlying fuzzy topological space is a graded L-fuzzy topological space of the type as considered in Chattopadhyay, Hazra & Samanta [4], Höhle [8], and Šostak [12].

In Section 2 we study the graded convergence of Warren type fuzzy filters (cf. Warren [13]) and investigate its relation with the graded convergence of associated fuzzy nets.

Received by the editors September 24, 2004 and, in revised form, February 5, 2005.

²⁰⁰⁰ Mathematics Subject Classification. 54A40, 03E72.

Key words and phrases. fuzzy filter, g-filter, graded convergence, fuzzy topology.

The present work was supported by Special Assistance Programme (SAP) of UGC, New Delhi, India [Grant No. F. 510/8/DRS/2004 (SAP-I)].

In Section 3 we deal with the convergence of g-filters. In doing so we have established decomposition theorem involving the convergence of a g-filter with the convergence of a family of Warren type fuzzy filters. Relationship between the convergence of g-filters and gp-mappings has been studied.

1. NOTATION AND PRELIMINARIES

In this paper X denotes a nonempty set; unless otherwise mentioned, L denotes a completely distributive order dense complete lattice with an order reversing involution ℓ whereas $L_0 = L \setminus \{0\}$. Let 0 and 1 denote respectively the least and the greatest elements of L. Let L^X be the collection of all L-fuzzy subsets of X and $\operatorname{Pt}(L^X)$ the set of all L-fuzzy points of X. M(L) denotes the set of all molecules of L whereas $M(L^X)$ denotes the set of all molecule points of L^X . By $\tilde{0}$ and $\tilde{1}$ we denote the constant L-fuzzy subsets of X taking values 0 and 1 respectively. For $p_x \in \operatorname{Pt}(L^X)$ and $A, B \in L^X$ we say $p_x \not\in A$ if $p_x \not\in A'$ and $A \not\in B$ if $A \not\subseteq B'$. For other notations we follow Liu [14].

Definition 1.1 (Šostak [12]). A function $\tau: L^X \to L$ is called an L-fuzzy topology on X if it satisfies the following conditions:

- (O1) $\tau(\tilde{0}) = \tau(\tilde{1}) = 1$,
- (O2) $\tau(A_1 \wedge A_2) \ge \tau(A_1) \wedge \tau(A_2)$, for $A_1, A_2 \in L^X$, and
- (O3) $\tau(\bigvee_{i \in \Delta} A_i) \ge \bigwedge_{i \in \Delta} \tau(A_i)$ for any $\{A_i\}_{i \in \Delta} \subset L^X$.

The pair (X, τ) is called an *L-fuzzy topological space* and τ is also called a *gradation* of openness on X.

Definition 1.2 (Šostak [12]). A function $\mathcal{F}: L^X \to L$ is called an L-fuzzy cotopology of X if it satisfies the following conditions:

- (C1) $\mathcal{F}(\tilde{0}) = \mathcal{F}(\tilde{1}) = 1$,
- (C2) $\mathcal{F}(A_1 \vee A_2) \geq \mathcal{F}(A_1) \wedge \mathcal{F}(A_2)$, for $A_1, A_2 \in L^X$, and
- (C3) $\mathcal{F}\left(\bigwedge_{i\in\Delta}A_i\right)\geq\bigwedge_{i\in\Delta}\mathcal{F}(A_i)$ for any $\{A_i\}_{i\in\Delta}\subset L^X$.

The pair (X, \mathcal{F}) is called an *L-fuzzy co-topological space* and \mathcal{F} is also called a gradation of closedness on X.

Definition 1.3 (Mondal & Samanta [10]). Let (X, τ) be an L-fuzzy topological space and let $Q: Pt(L^X) \times L^X \to L$ be a mapping defined by

$$Q(p_x, A) = \bigvee \{ \tau(U); \ p_x \, \mathsf{q} \, U \subseteq A \}.$$

Then Q is said to be a gradation of q-neighborhoodness in (X, τ) .

Definition 1.4 (Mondal & Samanta [10]). Let (X, τ) be an L-fuzzy topological space and let $Q: Pt(L^X) \times L^X \to L$ be a mapping defined by

$$Q(p_x,A) = \bigvee \{\tau(U); \ p_x \, \operatorname{Q} U \subset A\}.$$

Then Q is said to be a gradation of Q-neighborhoodness.

Proposition 1.5 (Mondal & Samanta [10]). Let Q be a gradation of q-neighbour-hoodness in an L-fuzzy topological space (X, τ) . Then

(QN1): $\forall p_x \in Pt(L^X), \ Q(p_x, \tilde{1}) = 1, \ Q(p_x, \tilde{0}) = 0.$

(QN2): $Q(p_x, A) \leq Q(p_x, B)$ if $A, B \in L^X$, $A \subseteq B$.

(QN3): $\forall p_x \in \text{Pt}(L^X)$ and $\forall A, B \in L^X$, $Q(p_x, A \land B) = Q(p_x, A) \land Q(p_x, B)$.

(QN4): $Q(p_x, A) \not\leq k$ implies that there exists a $B_p \in L^X$ such that $p_x \not\in B_p \subseteq A$ and $\bigwedge_{(r_y \not\in B_p)} Q(r_y, B_p) \not\leq k$.

Proposition 1.6 (Mondal & Samanta [10]). Let $Q: \operatorname{Pt}(L^X) \times L^X \to L$ be a mapping satisfying (QN1)-(QN3) of Proposition 1.5. Let $\bar{\tau}: L^X \to L$ be defined by $\bar{\tau}(A) = \bigwedge_{(p_x \ q_A)} Q(p_x, A)$. Then $(X, \bar{\tau})$ forms an L-fuzzy topological space. If further the condition (QN4) of Proposition 2.4 is satisfied by Q then the mapping $\bar{Q}: \operatorname{Pt}(L^X) \times L^X \to L$ defined by

$$\bar{Q}(p_x, A) = \bigvee \{\bar{\tau}(U); \ p_x \, \mathsf{Q} \, U \subset A\}$$

is identical with Q.

Proposition 1.7 (Mondal & Samanta [10]). Let Q be a gradation of q-neighbour-hoodness in an L-fuzzy topological space (X,τ) and $\bar{\tau}:L^X\to L$ be defined by $\bar{\tau}(A)=\bigvee_{(p_x\,q_A)}Q(p_x,A)$ then $\bar{\tau}$ is an L-fuzzy topology on X and $\bar{\tau}=\tau$.

Definition 1.8 (Mondal & Samanta [10]). Let (X, τ) be an L-fuzzy topological space and $e \in Pt(L^X)$. The q-neighborhood system of the fuzzy point e with respect to the Chang fuzzy topology τ_r , denoted by $\tilde{Q}_r(e)$, is defined by $\tilde{Q}_r(e) = \{U \in L^X; \exists V \in \tau_r \text{ satisfying } e \, q \, V \subseteq U\}$.

Definition 1.9 (Mondal & Samanta [10]). Let (X, τ) be an L-fuzzy topological space and $N : Pt(L^X) \times L^X \to L$ be a mapping defined by

$$N(p_x, A) = \bigvee \{ \tau(U); \ p_x \in U \subseteq A \}.$$

Then N is said to be a gradation of neighborhoodness in (X, τ) .

Definition 1.10. Let (X, τ) be an L-fuzzy topological space and $e \in Pt(L^X)$. The neighborhood system of the fuzzy point e with respect to the Chang fuzzy topology τ_r , denoted by $\tilde{N}_r(e)$, is defined by

$$\tilde{N}_r(e) = \{ U \in L^X; \exists V \in \tau_r \text{ satisfying } e \in V \subseteq U \}.$$

Definition 1.11 (Liu [14]). Let L be a complete lattice. Define a relation '<<' in L as follows: $\forall a, b \in L$, a << b if and only if $\forall S \subset L$, $\forall S \geq b \Rightarrow \exists s \in S$ such that $s \geq a$, $\forall a \in L$, denote $\beta(a) = \{b \in L; b << a\}$, $\beta^0(a) = M(\beta(a))$.

Definition 1.12 (Chattopadhyay, Hazra & Samanta [4]). Let (X, τ) and (Y, δ) be two L-fuzzy topologies and $f: X \to Y$ be a mapping. Then f is called a gradation preserving map (gp-map) if for each $B \in L^Y, \delta(B) \leq \tau(f^{-1}(B))$.

2. Fuzzy Filter and its Convergence

Definition 2.1. Let X be a nonempty crisp set. A fuzzy filter on L^X is a non-empty family \mathcal{G} of L-fuzzy subsets of X such that

- (i) $\tilde{0} \notin \mathcal{G}$,
- (ii) \mathcal{G} is closed under finite intersection, and
- (iii) $\forall A, B \in L^X$ if $B \in \mathcal{G}$ and $B \subset A$ then $A \in \mathcal{G}$.

Example 2.2. Let (X, τ) be an L-fuzzy topological space with τ as a gradation of openness on X, $e \in M(L^X)$. Then, for every $r \in L_0$, $\tilde{Q}_r(e)$ and $\tilde{N}_r(e)$ are fuzzy filters on L^X .

Example 2.3. Let X be an infinite crisp set then for each $r \in L_0$ the collection $\{A \in L^X; A'_{r'} \text{ is finite}\}$ is a fuzzy filter on L^X where $A'_{r'}$ is the r'-cut of A'.

Definition 2.4. Let (X, τ) be an L-fuzzy topological space $\mathcal{G} \subset L^X$ be a fuzzy filter on L^X , $e \in Pt(L^X)$. Then e is called a *cluster point* of \mathcal{G} of *upper grade* l (respectively, *lower grade* k), denoted by $\mathcal{G} \infty^l e$ (respectively, $\mathcal{G} \infty_k e$), if

$$l' = \bigwedge \{ r \in L_0; \ U \cap A \neq \tilde{0}, \ \forall \ U \in \tilde{Q}_r(e) \text{ and } A \in \mathcal{G} \}$$

(respectively, if

$$k' = \bigvee \{r \in L_0; \exists U \in \tilde{Q}_r(e) \text{ and } \exists A \in \mathcal{G} \text{ such that } A \cap U = \tilde{0}\} \}.$$

And e is called a limit point of \mathcal{G} of upper grade l (respectively, lower grade k), denoted by $\mathcal{G} \to^l e$ (respectively, $\mathcal{G} \to_k e$), if $l' = \bigwedge \{r \in L_0; \ \tilde{Q}_r(e) \subset \mathcal{G}\}$ (respectively, $k' = \bigvee \{r \in L_0; \ \tilde{Q}_r(e) \not\subseteq \mathcal{G}\}$).

Proposition 2.5. For any fuzzy filter G in an L-fuzzy topological space (X, τ) , we have the following properties.

- (i) $\mathcal{G} \infty^l e$ and $\mathcal{G} \infty_k e \Rightarrow k \not\geqslant l$.
- (ii) $\mathcal{G} \to^l e \text{ and } \mathcal{G} \to_k e \Rightarrow k \not> l$.

Proof. (i) Let $\mathcal{U} = \{r \in L_0; \ \forall \ U \in \tilde{\mathcal{Q}}_r(e) \ \text{and} \ \forall \ V \in \mathcal{G}, U \cap V \neq \tilde{0}\}$ and $\mathcal{V} = \{r \in L_0; \ \exists \ U \in \tilde{\mathcal{Q}}_r(e), \ V \in \mathcal{G}; \ U \cap V = \tilde{0}\}$. Then obviously $\mathcal{U} \cap \mathcal{V} = \emptyset$ and $\mathcal{U} \cup \mathcal{V} = L_0$. Also from the definition of limit points of upper grade and lower grade of a fuzzy filter we have $l' = \bigwedge \mathcal{U}$ and $k' = \bigvee \mathcal{V}$. If $\bigwedge \mathcal{U} > \bigvee \mathcal{V}$ then there exists $m \in L_0$ such that $\bigwedge \mathcal{U} > m > \bigvee \mathcal{V} \implies m \notin \mathcal{U}$ and $m \notin \mathcal{V}$, which is contradictory to the fact that $\mathcal{U} \cup \mathcal{V} = L_0$. So, $l' = \bigwedge \mathcal{U} > \bigvee \mathcal{V} = k'$ is not possible. This implies $k \not\geq l$.

Proposition 2.6. If L be an order dense chain then, in an L-fuzzy topological space (X, τ) , we have the following properties.

- (i) $\mathcal{G} \infty^l e$ and $\mathcal{G} \infty_k e \Rightarrow k = l$.
- (ii) $\mathcal{G} \to^l e$ and $\mathcal{G} \to_k e \Rightarrow k = l$.

Proof. (i) As in Proposition 2.5, if we consider the partitions \mathcal{U} and \mathcal{V} of L_0 and $l' = \bigwedge \mathcal{U}$, $k' = \bigvee \mathcal{V}$ then we have $k \leq l$. If possible let k < l then $k' > l' \Rightarrow \exists m \in L_0$ such that $k' > m > l' \Rightarrow \bigvee \mathcal{V} > m > \bigwedge \mathcal{U} \Rightarrow m \in \mathcal{V}$ and $m \in \mathcal{U}$, which is contradictory to the fact that $\mathcal{U} \cap \mathcal{V} = \emptyset$. Hence $k \nleq l$.

Note 2.7. If in addition L is a chain then in the L-fuzzy topological space (X, τ) , as there is no difference between $\mathcal{G} \infty^l e$ and $\mathcal{G} \infty_l e$ so they will be commonly denoted by $\mathcal{G} \infty(l) e$. Similarly, $\mathcal{G} \to^l e$ and $\mathcal{G} \to_l e$ will be commonly denoted by $\mathcal{G} \to (l) e$.

Proposition 2.8. Let (X, τ) be an L-fuzzy topological space with τ as a gradation of openness on X, $\mathcal{G} \subseteq L^X$ be a fuzzy filter on L^X , $e \in \text{Pt}(L^X)$. Then, for $k \in L$, we have

- (i) $\mathcal{G} \to^k e \Rightarrow \mathcal{G} \infty^l e \text{ for some } l \geq k$,
- (ii) $\mathcal{G} \infty^k e \geq f \Rightarrow \mathcal{G} \infty^l f \text{ for some } l \geq k$,
- (iii) $\mathcal{G} \to^k e \geq f \implies \mathcal{G} \to^l f \text{ for some } l \geq k$,

- (iv) $\mathcal{G} \infty_k e \Rightarrow \mathcal{G} \rightarrow_l e \text{ for some } l \leq k$,
- (v) $\mathcal{G} \infty_k e \leq f \Rightarrow \mathcal{G} \infty_l f \text{ for some } l \leq k, \text{ and }$
- (vi) $\mathcal{G} \to_k e \leq f \Rightarrow \mathcal{G} \to_l f \text{ for some } l \leq k$.

The proof is straightforward.

Definition 2.9. Let (X, τ) be an L-fuzzy topological space and \mathcal{G}, \mathcal{H} be any two fuzzy filters on L^X . Say \mathcal{H} is finer than \mathcal{G} or subfilter of \mathcal{G} , or say \mathcal{G} is coarser than \mathcal{H} if $\mathcal{G} \subseteq \mathcal{H}$.

Proposition 2.10. Let (X,τ) be an L-fuzzy topological space and \mathcal{G},H be fuzzy filters on L^X , \mathcal{H} be coarser than \mathcal{G} , $e \in \text{Pt}(L^X)$. Then, for $k \in L$, we have

- (i) $\mathcal{H} \to^k e \implies \mathcal{G} \to^l e \text{ for some } l \ge k$,
- (ii) $\mathcal{G} \infty^k e \Rightarrow \mathcal{H} \infty^l e \text{ for some } l \geq k$,
- (iii) $\mathcal{H} \to_k e \Rightarrow \mathcal{G} \to_l e \text{ for some } l \leq k, \text{ and }$
- (iv) $\mathcal{G} \infty_k e \Rightarrow \mathcal{H} \infty_l e \text{ for some } l \leq k$.

Proposition 2.11. Let (X, τ) be an L-fuzzy topological space, \mathcal{G} be a fuzzy filter on L^X , Δ be the collection of all subfilters of \mathcal{G} , $e \in \text{Pt}(L^X)$. Then we have

- (i) $\mathcal{G} \to l e \Rightarrow l = \bigwedge_{\mathcal{H} \in \Delta} \{ r \in L; \ \mathcal{H} \to r e \},$
- (ii) $\mathcal{G} \infty^l e \Rightarrow l = \bigvee_{\mathcal{H} \in \Delta} \{r \in L; \ \mathcal{H} \infty^r e\},$
- (iii) $\mathcal{G} \infty(l) \ e \Rightarrow l = \bigvee_{\mathcal{H} \in \Delta} \{r \in L; \ \mathcal{H} \to (r)e\}, \ \text{if L is a chain,}$
- (iv) $\mathcal{G} \infty(l) \ e \Rightarrow \exists \ a \ subfilter \ \mathcal{H} \ of \ \mathcal{G} \ such \ that \ \mathcal{H} \rightarrow (l) e \ if \ L \ is \ a \ chain,$
- (v) $\mathcal{G} \to_l e \Rightarrow l = \bigwedge_{\mathcal{H} \in \Delta} \{r \in L; \mathcal{H} \to_r e\}, \text{ and }$
- (vi) $\mathcal{G} \infty_l e \Rightarrow l = \bigvee_{\mathcal{H} \in \Delta} \{r \in L; \ \mathcal{H} \infty_r e\}.$

Proof. (i) For, any $\mathcal{H} \in \Delta$, $\mathcal{H} \to^r e$ and $\mathcal{G} \to^l e$ implies $r \geq l$, so

$$l \le \bigwedge_{\mathcal{H} \in \Delta} \{ r \in L; \ \mathcal{H} \to^r e \}.$$

Again as a particular case taking $\mathcal{H} = \mathcal{G}$ we get $l \geq \bigwedge_{\mathcal{H} \in \Delta} \{r \in L; \mathcal{H} \to^r e\}$. Hence the proof follows.

- (ii) Similar to (i).
- (iii) Let \mathcal{H} be a subfilter of \mathcal{G} such that $\mathcal{H} \to (r)e$. Then, for every s > r', $\tilde{Q}_s(e) \subseteq \mathcal{H}$. So, $U \in \tilde{Q}_s(e)$ and $V \in \mathcal{G}$ implies $U, V \in \mathcal{H}$ since $\tilde{Q}_s(e), \mathcal{G} \subseteq \mathcal{H}$. This implies $U \cap V \neq \tilde{0}$.

So, for some $l \geq r$, $\mathcal{G} \infty(l)$ e. Again as \mathcal{H} is any subfilter of \mathcal{G} , so $\mathcal{G} \infty(l)$ $e \Rightarrow$

$$l \geq \bigvee_{\mathcal{H} \in \Delta} \{r \in L; \ \mathcal{H} \to (r)e\}.$$

Next let $\mathcal{G} \infty(l)$ e in (X,τ) and let $\mathcal{B} = \mathcal{G} \cup (\bigcup_{m>l'} \tilde{Q}_m(e))$. Then $U_1, U_2 \in \bigcup_{m>l'} \tilde{Q}_m(e)$ implies that there exists a $m_1, m_2 \in L_0$ such that $m_1, m_2 > l'$ and $U_1 \in \tilde{Q}_{m_1}(e)$ and $U_2 \in \tilde{Q}_{m_2}(e)$.

Without loss of generality let $m_1 > m_2$ then $U_1, U_2 \in \tilde{Q}_{m_2}$ (as $\tilde{Q}_{m_1}(e) \subseteq \tilde{Q}_{m_2}(e)$). So,

$$U_1 \cap U_2 \in \tilde{Q}_{m_2}(e) \Rightarrow U_1 \cap U_2 \in \bigcup_{m>l'} \tilde{Q}_m(e),$$

i. e., $\bigcup_{m>l'} \tilde{Q}_m(e)$ has the finite intersection property. \mathcal{G} being a fuzzy filter, also has the finite intersection property.

Again $\mathcal{G} \infty(l)$ e implies that, for all m > l', $U \in \mathcal{G}$ and $V \in \tilde{Q}_m(e)$ means $U \cap V \neq \tilde{0}$. Therefore $\mathcal{B} = \mathcal{G} \cup \left(\bigcup_{m>l'} \tilde{Q}_m(e)\right)$ has the finite intersection property. As $\tilde{0} \notin \mathcal{G}$ and $\tilde{0} \notin \bigcup_{m>l'} \tilde{Q}_m(e)$, so $\tilde{0} \notin \mathcal{B}$. Denote the filter generated by \mathcal{B} as \mathcal{B} .

So, $\uparrow \mathcal{B}$ is a subfilter of \mathcal{G} . Let $\mathcal{H} = \uparrow \mathcal{B}$ then, for all m > l', $\tilde{Q}_m(e) \subseteq \mathcal{H}$. This implies that, for some $r \geq l$, $\mathcal{H} \to (r)e$.

The proofs of (iv)-(vi) are straightforward.

Definition 2.12. Let (X,τ) be an L-fuzzy topological space, S be a molecule net on L^X , $\mathcal G$ be a fuzzy filter on L^X . For S we define the fuzzy filter associated with the net S as the family $\mathcal G(S)$ of all fuzzy subsets of X with which the net S eventually quasi-coincides. For $\mathcal G$, let $\mathcal D(\mathcal G)=\{(e,A)\in M(L^X)\times \mathcal G;\ e \not\in A\}$ and equip $\mathcal D(\mathcal G)$ with the relation \le on it as $\forall\ (e,A),\ (d,B)\in \mathcal D(\mathcal G),\ (e,A)\le (d,B)\iff A\supseteq B$. Define the molecule net associated with the fuzzy filter $\mathcal G$ as the mapping $S(\mathcal G):\mathcal D(G)\to M(L^X)$, defined by $S(\mathcal G)(e,A)=e\ \forall\ (e,A)\in \mathcal D(G)$.

Definition 2.13 (Mondal & Samanta [10]). Let (X, τ) be an L-fuzzy topological space and $e \in Pt(L^X)$. Let D be any directed set and $S: D \to Pt(L^X)$ be any fuzzy net. For $U \in L^X$ if $\exists m \in D$ such that $S(n) \not\in U \ \forall n \geq m$ holds then we say

$$S \neq U$$
 eventually;

if, for every $m \in D$, there exists $n \in D$ such that $n \geq m$ and $S(n) \not\in U$ then we say $S \not\in U$ frequently. Call e a cluster point with upper grade l, denoted by $S oldsymbol{\infty}^l e$ (respectively, a cluster point with lower grade k, denoted by $S oldsymbol{\infty}_k e$) of a fuzzy net $S: D \to \operatorname{Pt}(L^X)$, if

$$l' = \bigwedge \{ r \in L_0; \ \forall \ U \in \tilde{Q}_r(e), \ U \not\in S \text{ frequently} \}$$

(respectively, if $k' = \bigvee \{r \in L_0; \exists V \in \tilde{Q}_r(e) \text{ such that } V \not \cap S \text{ eventually} \}$). Call e a limit point of upper grade l of S, denoted by $S \to l$ e (respectively, a limit point of

lower grade k of S, denoted by $S \rightarrow_k e$) if

$$l' = \bigwedge \{ r \in L_0; \ \forall \ U \in \tilde{Q}_r(e), \ U \not\in S \text{ eventually} \}$$

(respectively, $k' = \bigvee \{r \in L_0; \exists V \in \tilde{Q}_r(e) \text{ such that } V \not \cap S \text{ frequently} \}$).

Proposition 2.14. Let (X,τ) be an L-fuzzy topological space, \mathcal{G} be a fuzzy filter on L^X , S be a molecule net in L^X , $e \in \text{Pt}(L^X)$. Then, for $k \in L$, we have the following properties.

- (i) $S \to^k e \iff \mathcal{G}(S) \to^k e$.
- (ii) $\mathcal{G} \to^k e \iff S(\mathcal{G}) \to^k e$.
- (iii) $\mathcal{G} \infty^k e \iff S(\mathcal{G}) \infty^k e$.
- (iv) $S \infty^k e \Rightarrow \mathcal{G}(S) \infty^l e \text{ for some } l \geq k.$

Proof. (i)
$$S \to^k e \iff k' = \bigwedge \{r \in L_0; \ \forall \ U \in \tilde{Q}_r(e), \ S \not\subseteq U \text{ eventually} \}$$

$$\iff k' = \bigwedge \{r \in L_0; \ \forall \ U \in \tilde{Q}_r(e), \ U \in \mathcal{G}(S) \}$$

$$\iff k' = \bigwedge \{r \in L_0; \ \tilde{Q}_r(e) \subseteq \mathcal{G}(S) \}$$

$$\iff \mathcal{G}(S) \to^k e.$$

Similarly, we can prove the other results.

Proposition 2.15. Let (X, τ) be an L-fuzzy topological space, \mathcal{G} be a fuzzy filter on L^X , S be a molecule net in L^X , $e \in \text{Pt}(L^X)$. Then, for $k \in L$, we have the following properties.

- (i) $S \to_k e \iff \mathcal{G}(S) \to_k e$.
- (ii) $\mathcal{G} \to_k e \iff S(\mathcal{G}) \to_k e$.
- (iii) $\mathcal{G} \infty_k e \iff S(\mathcal{G}) \infty_k e$.
- (iv) $S \infty_k e \Rightarrow \mathcal{G}(S) \infty_l e \text{ for some } l \geq k.$

Proof. (i) $S \to_k e \iff k' = \bigvee \{r \in L_0; \exists U \in \tilde{Q}_r(e) \text{ such that } S \not \cap U \text{ frequently} \}$ $\iff k' = \bigvee \{r \in L_0, \exists U \in \tilde{Q}_r(e) \text{ such that } U \not \in \mathcal{G}(S)\} \iff k' = \bigvee \{r \in L_0; \tilde{Q}_r(e) \not \subseteq \mathcal{G}(S)\} \iff \mathcal{G}(S) \to_k e.$

(ii) $\mathcal{G} \to_k e \Rightarrow k' = \bigvee \{r \in L_0; \ \tilde{Q}_r(e) \not\subseteq \mathcal{G}\}.$

Now $\tilde{Q}_r(e) \not\subseteq \mathcal{G} \Rightarrow \exists U \in \tilde{Q}_r(e)$ such that $U \not\in \mathcal{G}$. Then, for every $(f, V) \in D(\mathcal{G}), U \not\supseteq V$.

Now $U \not\supseteq V \Rightarrow U' \not\subseteq V' \Rightarrow \exists x \in X \text{ such that } U'(x) \not\leq V'(x)$. As M(L) is a join generating subset of L so there exists $k \in M(L)$ such that $U'(x) \geq k \not\leq V'(x)$ $\Rightarrow k_x \in M(L^X)$ and $k_x \in U'$ but $k_x \not\in V' \Rightarrow k_x \not\in V$ but $k_x \not\in U \Rightarrow (k_x, V) \in D(\mathcal{G})$. Again $(k_x, V) \geq (f, V)$ but $S(\mathcal{G})(k_x, V) = k_x \not\in U \Rightarrow S(\mathcal{G}) \not\in U$ frequently.

Conversely, if $U \in \mathcal{G}$ then for all $(f,V), (g,U) \in D(\mathcal{G})$ with $(f,V) \geq (g,U)$ we have $V \subseteq U$. Now $f \not\in V$ and hence $f \not\in U$. So, $[S(\mathcal{G})(f,V)] \not\in U$ i. e., $S(\mathcal{G}) \not\in U$ eventually. Hence $S(\mathcal{G}) \not\in U$ frequently $\Rightarrow U \not\in \mathcal{G} \Rightarrow \tilde{Q}_r(e) \not\subseteq \mathcal{G}$. So, $U \in \tilde{Q}_r(e)$ and $S(\mathcal{G}) \not\in U$ frequently $\Rightarrow \tilde{Q}_r(e) \not\subseteq \mathcal{G}$. So, we can say now that

$$\tilde{Q}_r(e) \not\subseteq \mathcal{G} \iff \exists \ U \in \tilde{Q}_r(e) \text{ such that } S(\mathcal{G}) \not \cap U \text{ frequently.}$$

Hence,

$$\bigvee \{r \in L_0; \ \tilde{Q}_r(e) \not\subseteq \mathcal{G}\}$$

$$= \bigvee \{r \in L_0; \ \exists \ U \in \tilde{Q}_r(e) \text{ such that } S(\mathcal{G}) \not \cap U \text{ frequently}\},$$

 $i. e., \mathcal{G} \to_k e \iff S(\mathcal{G}) \to_k e.$

(iii) Let, for some $r \in L_0$ there exists $U \in \tilde{Q}_r(e)$ and $V \in \mathcal{G}$ such that $U \cap V = \tilde{0}$. Take $(f, V) \in D(\mathcal{G})$. We shall show that for all $(g, W) \in D(\mathcal{G})$ if $(g, W) \geq (f, V)$ then $S(\mathcal{G})(g, W) \not\in U$. Suppose $S(\mathcal{G})(g, W) \not\in U$, then $g \not\in U$. Again

$$(q, W) \ge (f, V) \Rightarrow q \neq W \subseteq V$$

so $g \neq V$. Therefore $g \in M(L^X)$, $g \neq U$ and $g \neq V \implies g \neq (U \cap V) \implies U \cap V \neq \tilde{0}$, a contradiction.

Next let for some $r \in L_0 \exists U \in \tilde{Q}_r(e)$ such that $S(\mathcal{G}) \not \cap U$ eventually. Then, there exists $(f, V) \in D(\mathcal{G})$ such that, for all $(g, W) \in D(\mathcal{G})$, $(g, W) \geq (f, V)$. This implies $S(\mathcal{G})(g, W) \not \cap U$, i. e., $g \not \cap U$.

Therefore for all $g \not\in V$ as $(g, V) \geq (f, V)$ so $S(\mathcal{G})(g, V) \not\in U$, i. e., $g \not\in U$, i. e., $g \not\in V$, $g \not\in V$. So, $U \cap V = \tilde{0}$. Thus (iii) is proved.

(iv) Let $U \in \tilde{Q}_r(e)$ and $V \in \mathcal{G}(S)$ be such that $U \cap V = \tilde{0}$. Now $V \in \mathcal{G}(S) \Rightarrow S \neq V$ eventually $\Rightarrow \exists m \in D$ such that $\forall n \geq m$, $S(n) \neq V$. We shall show that $S \neq U$ eventually. Suppose $S \neq U$ frequently, then $\exists p \in D$ such that $p \geq m$ and $S(p) \neq U$. Now $S(p) \neq V$, $S(p) \neq U$ and $S(p) \in M(L^X) \Rightarrow S(p) \neq U \cap V \neq \tilde{0}$, a contradiction.

Thus for $U \in \tilde{Q}_r(e)$, $V \in \mathcal{G}(S)$ if $U \cap V = \tilde{0}$ then $S \not\subset U$ eventually. So,

$$\begin{split} l' &= \bigvee \{r \in L_0; \ \exists \ U \in \tilde{Q}_r(e), \ \exists \ V \in \mathcal{G}(S); \ U \cap V = \tilde{0} \} \\ &\leq \bigvee \{r \in L_0; \ \exists \ U \in \tilde{Q}_r(e) \text{ such that } S \not \cap U \text{ eventually} \} = k', \end{split}$$

 $i. e., \mathcal{G}(S) \infty_l e \Rightarrow S \infty_k e \text{ for some } k \leq l.$

Definition 2.16 (Mondal & Samanta [10]). Let (X, \mathcal{F}) be an L-fuzzy co-topological space with \mathcal{F} as a GC on X. For each $A \in L^X$ we define

$$\operatorname{cl}(A,r) = \bigwedge \{ D \in L^X; A \subseteq D; D \in \mathcal{F}_r \}$$

where $\mathcal{F}_r = \{C \in L^X; \mathcal{F}(C) \geq r\}$. The operator cl is said to be *L-fuzzy closure* operator in (X, \mathcal{F}) .

Definition 2.17 (Mondal & Samanta [10]). In an L-fuzzy topological space (X, τ) ,

$$p_x \in \operatorname{cl}(A, m)$$

if and only if, for all $U \in \tau_m$, $p_x \, Q U \Rightarrow U \, Q A$.

Proposition 2.18. Let (X,τ) be an L-fuzzy topological space and $A \in L^X$; $e \in M(L^X)$. Then $e \in cl(A, k')$ implies that there exists a fuzzy filter \mathcal{G} on L^X such that $A' \notin \mathcal{G}$ and for some $l \geq k$, $\mathcal{G} \to^l e$.

Proof. Let $e \in \operatorname{cl}(A, k')$. Then for every $U \in \tilde{Q}_{k'}(e)$, $U \neq A$ (by Proposition 2.17), i.e., for every $U \in \tilde{Q}_{k'}(e) \exists x^u \in X$ such that $U(x^u) \not\leq A'(x^u) \Rightarrow A(x^u) \not\leq U'(x^u)$. As M(L) is a join generating subset of L so $\exists p^u \in M(L)$ such that $A(x^u) \geq p^u \not\leq U'(x^u) \Rightarrow p^u_{x^u} \in M(L^X)$ and $p^u_{x^u} \neq U$ and $p^u_{x^u} \in A$.

As $e \in M(L^X)$ so $\tilde{Q}_{k'}(e)$ is a directed set with respect to the relation ' \geq ' defined by $\forall U, V \in \tilde{Q}_{k'}(e), U \geq V \iff U \subseteq V$. So we define a molecule net $S: \tilde{Q}_{k'}(e) \to M(L^X)$ by $S(U) = p^u_{x^u}$. Then S is a molecule net in A and as $\forall U \in \tilde{Q}_{k'}(e), U \not\in A$ so $\forall U \in \tilde{Q}_{k'}(e), U \not\in A$ eventually, which implies $\bigwedge \{s \in L_0; \forall U \in \tilde{Q}_s(e), U \not\in A\}$ eventually $\{s \in A\}$ for some $\{s \in A\}$ eventually.

Now, for the associated filter $\mathcal{G}(S)$, by (i) of Proposition 2.14, $\mathcal{G}(S) \to^l e$. If $A' \in \mathcal{G}(S)$ then S eventually quasi-coincides with A' (i. e., S is eventually not in A), this contradicts the fact that S is a fuzzy net in A. So, $A' \notin \mathcal{G}(S)$.

Definition 2.19. Let X be nonempty crisp set. A nonempty subfamily $\mathcal{A} \subseteq L^X$ is called a *filter base* on L^X , if $\tilde{0} \notin \mathcal{A}$ and \mathcal{A} is closed under finite intersection. For a filter base \mathcal{A} on L^X , denote the filter generated by \mathcal{A} as \mathcal{A} .

Definition 2.20. Let (X,τ) be an L-fuzzy topological space, \mathcal{A} a filter base on L^X . An L-fuzzy point $e \in \operatorname{Pt}(L^X)$ is called a cluster point of \mathcal{A} with upper grade k, denoted by $\mathcal{A} \infty^k e$ (respectively, a cluster point of \mathcal{A} with lower grade l, denoted by $\mathcal{A} \infty_l e$) if $\mathcal{A} \infty^k e$ (respectively, if $\mathcal{A} \infty_l e$); e is called a limit point of \mathcal{A} with upper and lower grades m and n, denoted by $\mathcal{A} \to^m e$ and $\mathcal{A} \to_n e$ respectively if $\mathcal{A} \to^m e$ and $\mathcal{A} \to_n e$.

Proposition 2.21. Let (X, τ) and (Y, δ) be any two L-fuzzy topological spaces and let $f: (X, \tau) \to (Y, \delta)$ be a gp-map then for any filter base A in (X, τ) and $\forall e \in \text{Pt}(L^X), A \to^l e \Rightarrow f[A] \to^k f(e)$ for some $k \geq l$.

Proof. Let $\tilde{Q}_r(e)$ and $\underline{\tilde{Q}}_r(f(e))$ be the q-neighborhood systems of e and f(e) with respect to the Chang fuzzy topologies τ_r and δ_r respectively. Suppose \mathcal{A} is a filter base in $(X,\tau),\ e\in \operatorname{Pt}(L^X)$ and $\mathcal{A}\to^l e$. Let $\tilde{Q}_r(e)\subseteq\uparrow\mathcal{A}$. Then $\forall\ V\in\underline{\tilde{Q}}_r(f(e))$, since f is a gp-map, $f^{-1}(V)\in\tilde{Q}_r(e)\Rightarrow\exists\ A\in\mathcal{A}$ such that $f^{-1}(V)\supseteq A$.

Therefore
$$V \supseteq ff^{-1}(V) \supseteq f(A) \in f[A] \Rightarrow V \in f[A]$$
.

Proposition 2.22. Let $f:(X,\tau)\to (Y,\delta)$ be a mapping where (X,τ) and (Y,δ) be any two L-Fuzzy topological spaces. If, for any fuzzy filter base A and for any $e\in M(L^X)$,

$$\mathcal{A} \to^k e \Rightarrow f[\mathcal{A}] \to_l f(e)$$
 for some $l \geq k$,

then f is a gp-map.

Proof. Suppose f be not a gp-map, then $\exists V \in L^Y$ such that $\tau(f^{-1}(V)) \not\geq \delta(V)$. Therefore from the order dense property of L we get $k_1, k_2 \in L$ such that

$$\tau(f^{-1}(V)) \not\geq k_1 < k_2 < \delta(V).$$

Now we have

$$\tau(f^{-1}(V)) \not\geq k_1$$

- $\Rightarrow \bigwedge_{e} \mathbf{q}_{f^{-1}(V)} \{ Q(e, f^{-1}(V)); \ e \in M(L^X) \} \not \geq k_1$
- $\Rightarrow \exists e^0 \in M(L^X)$ such that $e^0 \not\in M(L^X)$ and $Q(e^0, f^{-1}(V)) \not\geq k_1$
- $\Rightarrow \bigvee \{\tau(U); e^0 \mathsf{q} U \subseteq f^{-1}(V)\} \not\geq k_1$
- $\Rightarrow \forall U \in L^X \text{ with } \tau(U) \geq k_1 \text{ and } e^0 \, \mathsf{Q} \, U, \ U \not\subseteq f^{-1}(V)$
- $\Rightarrow f^{-1}(V) \not\in \tilde{Q}_{k_1}(e^0)$
- $\Rightarrow ff^{-1}(V) \not\in f(\tilde{Q}_{k_1}(e^0)).$

For, if $f^{-1}(V) \notin \tilde{Q}_{k_1}(e^0)$ but $ff^{-1}(V) \in f(\tilde{Q}_{k_1}(e^0))$ then $\exists W \in \tilde{Q}_{k_1}(e^0)$ such that $ff^{-1}(V) = f(W)$,

$$V \supseteq ff^{-1}(V) = f(W)$$

 $\Rightarrow f^{-1}(V) \supseteq W \Rightarrow f^{-1}(V) \in \tilde{Q}_{k_1}(e^0) \text{ (as } e^0 \in M(L^X) \Rightarrow \tilde{Q}_{k_1}(e^0) \text{ is a fuzzy filter)},$ a contradiction. So, $f^{-1}(V) \notin \tilde{Q}_{k_1}(e^0)$.

Hence

$$V \supseteq ff^{-1}(V) \not\in f(\tilde{Q}_{k_1}(e^0)) \tag{1}$$

Again $e^0 \operatorname{q} f^{-1}(V) \Rightarrow f(e^0) \operatorname{q} V$ and we have $\delta(V) > k_2$. So,

$$V \in \tilde{Q}'_{k_2}(f(e^0)). \tag{2}$$

So, by (1) and (2), we have $f(\tilde{Q}_{k_1}(e^0)) \not\supseteq \tilde{Q}'_{k_2}(f(e^0))$. This means if

$$f[\tilde{Q}_{k_1}(e^0)] \to_l f(e^0)$$

then $l' \geq k_2$. But from the definition of convergence we have if $\tilde{Q}_{k_1}(e^0) \to^k e^0$ then $k \geq k'_1$. This implies $k' \leq k_1$.

Therefore $l' \geq k_2 > k_1 \geq k' \implies l < k$, a contradition to the given condition. Hence f is a gp-map.

3. LATTICE VALUED GENERALIZED FILTER

Definition 3.1 (Burton, Muraleetharan & Gutiérrez [1]). Let $\mathcal{G}: L^X \to L$ be a mapping satisfying

(GF1)
$$G(\tilde{0}) = 0$$
; $G(\tilde{1}) = 1$,

(GF2)
$$\forall A_1, A_2 \in L^X$$
, $\mathcal{G}(A_1 \wedge A_2) \geq \mathcal{G}(A_1) \wedge \mathcal{G}(A_2)$, and

(GF3)
$$\forall A, B \in L^X$$
, $\mathcal{G}(B) \geq \mathcal{G}(A)$ if $A \subset B$,

then \mathcal{G} is said to be a generalized filter (g-filter) on L^X .

Example 3.2. Let Q be the gradation of q-neighborhoodness in an L-fuzzy topological space (X, τ) , $e \in M(L^X)$. We define a mapping $Q_e : L^X \to L$ by

$$Q_e(U) = Q(e, U), \ \forall \ U \in L^X.$$

Then Q_e is a g-filter on L^X .

Example 3.3. Similarly the mapping $N_e: L^X \to L$ for a particular $e \in \text{Pt}(L^X)$, defined by $N_e(U) = N(e, U)$, $\forall U \in L^X$ is a g-filter on L^X where N is the gradation of neighborhoodness in an L-fuzzy topological space (X, τ) .

Example 3.4. Let X be an infinite crisp set and let $\mathcal{G}: L^X \to L$ be defined by $\mathcal{G}(A) = \bigvee \{r \in L_0; A'[r'] = \text{finite}\}$ where A'[r'] is an r'-cut of A', then \mathcal{G} is a g-filter on L^X .

Definition 3.5. Let \mathcal{G} and \mathcal{H} be any two g-filters on L^X . We say \mathcal{G} is coarser than \mathcal{H} or \mathcal{H} is finer than \mathcal{G} if $\mathcal{G} \leq \mathcal{H}$. In this case \mathcal{H} is also called a subfilter of \mathcal{G} .

Definition 3.6. Let \mathcal{G} be a g-filter in an L-fuzzy topological space (X,τ) and $e \in \operatorname{Pt}(L^X)$ Call e a limit point of \mathcal{G} , denoted by $\mathcal{G} \to e$ if $Q(e,U) \leq \mathcal{G}(U) \,\,\forall\,\, U \in L^X$, where Q is the gradation of Q-neighborhoodness in (X,τ) . Denote the join of all limit points of \mathcal{G} by $\lim \mathcal{G}$. Call e a cluster point of \mathcal{G} , denoted by $\mathcal{G} \propto e$ if $\mathcal{G}(A) \not\leq Q'(e,U) \Rightarrow A \cap U \neq \tilde{0}, \,\,\forall\,\, A,U \in L^X$, where Q is the gradation of Q-neighborhoodness on (X,τ) . Denote the join of all cluster points of \mathcal{G} by $\operatorname{cl} u\mathcal{G}$.

Proposition 3.7. In an L-fuzzy topological space (X, τ) for any g-filter \mathcal{G} and, for $e, f \in \text{Pt}(L^X)$, we have

- (i) $\mathcal{G} \to e \Rightarrow \mathcal{G} \infty e$; if L is complemented,
- (ii) $\mathcal{G} \infty e \geq f \Rightarrow \mathcal{G} \infty f$, and
- (iii) $\mathcal{G} \to e \geq f \Rightarrow \mathcal{G} \to f$.

Proof. (i) Let $\mathcal{G} \to e$ and let $\mathcal{G}(A) \not\leq Q'(e,U)$ for some $A, U \in L^X$. Then from the order dense property of $L \exists k \in M(L)$ such that $\mathcal{G}(A) \geq k \not\leq Q'(e,U) \Rightarrow \mathcal{G}(A) \geq k$ and $Q(e,U) \not\leq k'$.

Again $Q(e, U) \not\leq k' \Rightarrow \exists l \in M(L)$ such that $Q(e, U) \geq l \not\leq k'$. So,

$$\mathcal{G}(A \cap U) \ge \mathcal{G}(A) \wedge \mathcal{G}(U)$$
 by (GF2)
 $\ge \mathcal{G}(A) \wedge Q(e, U)$ (as $\mathcal{G} \to e$)
 $\ge k \wedge l$.

Now $l \leq 1 = k \vee k'$ (as L is complemented) $\Rightarrow l \leq k$ or $l \leq k'$ (as $l \in M(L)$) $\Rightarrow l \leq k$ (as $l \not\leq k'$ is assumed). So, $k \wedge l = l > 0$ (as $l \not\leq k' \Rightarrow l > 0$) $\Rightarrow \mathcal{G}(A \cap U) > 0 \Rightarrow A \cap U \neq \tilde{0}$, by (GF1) $\Rightarrow \mathcal{G} \propto e$.

- (ii) Let $\mathcal{G} \infty e \geq f$ and let $\mathcal{G}(A) \not\leq Q'(f,U)$ for some $A, U \in L^X$. Then as $e \geq f \Rightarrow Q(e,U) \geq Q(f,U)$. So, $Q'(f,U) \geq Q'(e,U) \Rightarrow \mathcal{G}(A) \not\leq Q'(e,U) \Rightarrow A \cap U \neq \tilde{0}$ (as $\mathcal{G} \infty e$) $\Rightarrow \mathcal{G} \infty f$.
 - (iii) The proof is straightforward.

Proposition 3.8. In an L-fuzzy topological space (X, τ) if \mathcal{H} is finer than \mathcal{G} and $p_x \in \text{Pt}(L^X)$ then, we have

- (i) $\lim \mathcal{G} \leq \operatorname{cl} u\mathcal{G}$ if L is complemented,
- (ii) $p_x \in \operatorname{clu} \mathcal{G} \iff \mathcal{G} \infty p_x$, if L is a chain,
- (iii) $p_x \in \lim \mathcal{G} \iff \mathcal{G} \to p_x$, if L is a chain,
- (iv) $\mathcal{H} \propto p_x \Rightarrow \mathcal{G} \propto p_x$,
- (v) $\operatorname{clu} \mathcal{G} \ge \operatorname{clu} \mathcal{H}$, and

(vi) $\lim \mathcal{G} \leq \lim \mathcal{H}$.

Proof. (i) is clear.

(ii) $\mathcal{G} \infty p_x \Rightarrow p_x \in \operatorname{cl} u\mathcal{G}$ is clear.

Let $p_x \in \operatorname{clu} \mathcal{G}$ and suppose $\mathcal{G} \not \infty p_x$. Then $\exists A, U \in L^X$ such that $\mathcal{G}(A) \not \leq Q'(p_x, U)$ but $A \cap U = \tilde{0}$.

Now $\mathcal{G}(A) \not\leq Q'(p_x, U) \Rightarrow \mathcal{G}'(A) \not\geq Q(p_x, U) \mathcal{G}'(A) \not\geq \bigvee \{r \in L_0; \ U \in \tilde{Q}_r(p_x)\} \Rightarrow \exists \ s \in L_0 \text{ such that } s \not\leq \mathcal{G}'(A) \text{ but } U \in \tilde{Q}_s(p_x).$

Now $U \in \tilde{Q}_s(p_x) \Rightarrow \exists V \in \tau_s$ such that $p_x \neq V \subseteq U$. Again $p_x \neq V \Rightarrow p \not\leq V'(x)$ $\Rightarrow \exists t \in L_0$ such that $p > t \not\leq V'(x)$ (since L is order dense), i. e., $t_x \neq V \subseteq U \Rightarrow U \in \tilde{Q}_s(t_x) \Rightarrow Q(t_x, U) \geq s$. As L is a chain so $\mathcal{G} \propto t_x$ from the definition of clu \mathcal{G} . Now $\mathcal{G}'(A) \not\geq s \Rightarrow \mathcal{G}(A) \not\leq s' \geq Q'(t_x, U) \Rightarrow \mathcal{G}(A) \not\leq Q'(t_x, U) \Rightarrow A \cap U \neq \tilde{0}$, a contradiction.

(iii) Similar to (ii).

Proofs of (iv)-(vi) are straightforward.

Proposition 3.9. Let \mathcal{G} be a g-filter on L^X and let $\mathcal{G}_r = \{U \in L^X; \mathcal{G}(U) \geq r\}$ then

- (1) for every $r \in L_0$, \mathcal{G}_r is a fuzzy filter on L^X ,
- (2) $\forall r, s \in L_0, \ \mathcal{G}_r \subseteq \mathcal{G}_s \ if \ r \geq s, \ and$
- $(3) \bigcap_{i \in \Delta} \mathcal{G}_{r_i} = \mathcal{G}_{\bigvee_{i \in \Delta} r_i}.$

Proof. (1) (i) We have $\mathcal{G}(\tilde{1}) = 1 \implies \mathcal{G}_r \neq \phi \ \forall \ r \in L_0$.

(ii)
$$\mathcal{G}(\tilde{0}) = 0 \implies \tilde{0} \not\in \mathcal{G}_r \ \forall \ r \in L_0.$$

(iii)
$$U_1, U_2 \in \mathcal{G}_r \Rightarrow \mathcal{G}(U_i) \geq r; i = 1, 2$$

$$\Rightarrow \mathcal{G}(U_1 \cap U_2) \geq \mathcal{G}(U_1) \wedge \mathcal{G}(U_2), \text{ by (GF2)}$$

$$\geq r$$

$$\Rightarrow U_1 \wedge U_2 \in \mathcal{G}_r, \ \forall \ r \in L_0.$$

(iv) Let $U \in \mathcal{G}_r$ and $U \subseteq V$ then

$$\mathcal{G}(V) \ge \mathcal{G}(U)$$
, by (GF3) $\ge r$

 $\Rightarrow V \in \mathcal{G}_r, \ \forall \ r \in L_0.$

Hence \mathcal{G}_r is a fuzzy filter on L^X .

- (2) The proof is straightforward.
- (3) $A \in \bigcap_{i \in \Delta} \mathcal{G}_{r_i} \iff \forall i \in \Delta, \ A \in \mathcal{G}_{r_i} \iff \forall i \in \Delta, \ \mathcal{G}(A) \ge r_i \iff \mathcal{G}(A) \ge \bigvee_{i \in \Delta} r_i \iff A \in \mathcal{G}_{\bigvee_{i \in \Delta} r_i}.$ So, $\bigcap_{i \in \Delta} \mathcal{G}_{r_i} = \mathcal{G}_{\bigvee_{i \in \Delta} r_i}.$

Proposition 3.10. Let for each $r \in L_0$, \mathcal{G}_r be a collection of L-fuzzy subsets of X satisfying conditions

- (1) \mathcal{G}_r is a fuzzy filter on L^X for each $r \in L_0$, and
- (2) For all $r, s \in L_0$, $\mathcal{G}_r \subseteq \mathcal{G}_s$ if $r \geq s$,

then the mapping $\bar{\mathcal{G}}: L^X \to L$, defined by $\bar{\mathcal{G}}(A) = \bigvee \{r \in L_0; A \in \mathcal{G}_r\}$ is a g-filter on L^X . If further $\{\mathcal{G}_r\}_{r \in L_0}$ satisfies Condition (3) of Proposition 3.9, then, for all $r \in L_0$, $\mathcal{G}_r = \bar{\mathcal{G}}_r = \{U \in L^X; \bar{\mathcal{G}}(U) \geq r\}$.

Proof. (1) (i) Since $\forall r \in L_0$, \mathcal{G}_r is a fuzzy filter on L^X , it follows that $\tilde{\mathcal{G}}(0) = 0$ and $\forall r \in L_0$, $\mathcal{G}_r \neq \phi$. So, $\tilde{\mathcal{G}}(\tilde{1}) = 1$.

(ii) $A_1 \in \mathcal{G}_{r_1}, A_2 \in \mathcal{G}_{r_2} \Rightarrow A_1, A_2 \in \mathcal{G}_{r_1 \wedge r_2}$ (by (2)) $\Rightarrow A_1 \cap A_2 \in \mathcal{G}_{r_1 \wedge r_2} \Rightarrow \bar{\mathcal{G}}(A_1 \cap A_2) \geq r_1 \wedge r_2$. As L is completely distributive so

$$\bar{\mathcal{G}}(A_1 \cap A_2) \geq \bar{\mathcal{G}}(A_1) \wedge \bar{\mathcal{G}}(A_2).$$

(iii) Let $A \subseteq B$. Then for $r \in L_0$, $A \in \mathcal{G}_r \Rightarrow B \in \mathcal{G}_r$. So, $\bar{\mathcal{G}}(B) \geq \bar{\mathcal{G}}(A)$.

(2) Now we shall show that $\forall r \in L_0$, $\mathcal{G}_r = \bar{\mathcal{G}}_r$. In fact $A \in \mathcal{G}_r \Rightarrow \bigvee \{k; A \in \mathcal{G}_k\} \geq r \Rightarrow \bar{\mathcal{G}}(A) \geq r \Rightarrow A \in \bar{\mathcal{G}}_r$. So, for all $r \in L_0$, $\mathcal{G}_r \subseteq \bar{\mathcal{G}}_r$. Again $B \in \bar{\mathcal{G}}_r \Rightarrow \bar{\mathcal{G}}(B) \geq r \Rightarrow \bigvee \{k \in L_0; B \in \mathcal{G}_k\} \geq r$. Let $S = \{k \in L_0; B \in \mathcal{G}_k\}$ then for all $k \in S$, $B \in \mathcal{G}_k$. So, $B \in \bigcap_{k \in S} \mathcal{G}_k = \mathcal{G}_{\bigvee_{k \in S} k} = \mathcal{G}_{k'}$, where $k' \geq r \subseteq \mathcal{G}_r$. So, $B \in \mathcal{G}_r \Rightarrow \bar{\mathcal{G}}_r \subseteq \mathcal{G}_r$. \square

Proposition 3.11. Let \mathcal{G} be a g-filter on an L-fuzzy topological space (X, τ) and let $e \in \text{Pt}(L^X)$ then

$$\forall r \in L_0, \ \mathcal{G} \to e \ \Rightarrow \ \mathcal{G}_r \to^l e \ \text{for some } l \geq r'.$$

Proof. $\mathcal{G} \to e \Rightarrow \mathcal{G}(U) \geq Q(e, U) \ \forall \ U \in L^X \Rightarrow \mathcal{G}_r \supseteq \tilde{Q}_r(e) \Rightarrow$

$$l' = \bigwedge \{ s \in L_0; \ \tilde{Q}_s(e) \subseteq \mathcal{G}_r \} \le r.$$

Therefore $\mathcal{G}_r \to^l e$ for some $l \geq r'$.

Proposition 3.12. Let \mathcal{G} be a g-filter on an L-fuzzy topological space (X, τ) and $e \in \text{Pt}(L^X)$. If for every $r \in L_0$, $\mathcal{G}_r \to_k e$ for some $k \geq r'$ then $\mathcal{G} \to e$.

Proof. Let the given condition be satisfied. To show

$$\mathcal{G}(U) \ge Q(e, U), \ \forall \ U \in L^X,$$

suppose, for some $U \in L^X$, $\mathcal{G}(U) \not\geq Q(e, U)$, i. e., $\mathcal{G}(U) \not\geq \bigvee \{\tau(V); e \neq V \subseteq U\}$. $\mathcal{G}(U) \not\geq \bigvee \{\tau(V); e \neq V \subseteq U\}$

 $\Rightarrow \exists V \in L^X \text{ such that } e \neq V \subseteq U \text{ and } \tau(V) \nleq \mathcal{G}(U)$

 $\Rightarrow \exists \alpha, \beta \in L_0 \text{ such that } \mathcal{G}(U) \ngeq \alpha < \beta < \tau(V) \text{ (since } L \text{ is order dense)}$

$$\Rightarrow U \notin \mathcal{G}_{\alpha} \text{ but } \tau(V) > \beta \text{ means } U \in \tilde{Q}_{\beta}(e).$$

Therefore

$$\tilde{Q}_{\beta}(e) \not\subseteq \mathcal{G}_{\alpha}$$
 (*)

Now according to the given condition $\mathcal{G}_{\alpha} \to_k e$ for some $k \geq \alpha'$ where

$$k' = \bigvee \{ s \in L_0; \ \tilde{Q}_s(e) \not\subseteq \mathcal{G}_{\alpha} \}.$$

$$\Rightarrow k' \geq \beta$$
, by $(*) \Rightarrow k' \geq \beta > \alpha \Rightarrow k < \alpha'$, a contradiction.

Proposition 3.13. Let \mathcal{G} be a g-filter on an L-fuzzy topological space (X, τ) and let $e \in \text{Pt}(L^X)$ then $\forall r \in L_0, \ \mathcal{G} \infty e \Rightarrow \mathcal{G}_r \infty_k e \text{ for some } k \geq r.$

Proof. Let $\mathcal{G} \infty e$ and suppose $\exists r \in L_0$ such that for no $k(\geq r)$, $\mathcal{G}_r \infty_k e$. Then $\mathcal{G}_r \infty_k e \Rightarrow k \not\geq r \Rightarrow k' \not\leq r' \Rightarrow$

$$\bigvee \{s \in L_0; \exists U \in \tilde{Q}_s(e), \exists A \in \mathcal{G}_r; A \cap U = \tilde{0}\} \not\leq r'$$

 $\Rightarrow \exists s \in L_0 \text{ such that } s \nleq r' \text{ and } \exists U \in \tilde{Q}_s(e), \exists A \in \mathcal{G}_r \text{ such that } A \cap U = \tilde{0}.$ Now $U \in \tilde{Q}_s(e)$ and $A \in \mathcal{G}_r \Rightarrow Q(e, U) \geq s$ and $\mathcal{G}(A) \geq r \Rightarrow Q'(e, U) \leq s'$ and $\mathcal{G}(A) \geq r$. Therefore, $s \nleq r' \Rightarrow s' \ngeq r \Rightarrow Q'(e, U) \ngeq \mathcal{G}(A)$ but $A \cap U = \tilde{0}$, a contradiction to the fact $\mathcal{G} \propto e$.

Proposition 3.14. Let \mathcal{G} be a g-filter on an L-fuzzy topological space (X, τ) and $e \in \text{Pt}(L^X)$. If for every $r \in L_0$, $\mathcal{G}_r \infty_k e$ for some $k \geq r$ then $\mathcal{G} \infty e$.

Proof. Let the given condition be satisfied. To show $\mathcal{G} \infty e$, suppose $\mathcal{G} / \infty e$. Then $\exists A, U \in L^X$ such that $\mathcal{G}(A) \not\leq Q'(e, U)$ but $A \cap U = \tilde{0}$. Therefore

$$\mathcal{G}(A) \not\leq Q'(e,U)$$

 $\Rightarrow \exists \alpha \in L_0 \text{ such that } \mathcal{G}(A) > \alpha \not\leq Q'(e,U) \text{ (from the order dense property of } L)$

$$\Rightarrow \mathcal{G}(A) > \alpha \text{ and } Q(e, U) \not\leq \alpha'.$$

Now

$$\mathcal{G}(A) > \alpha \implies A \in \mathcal{G}_{\alpha} \text{ and } Q(e, U) \not\leq \alpha'$$

 $\Rightarrow \bigvee \{r \in L_0; \ U \in \tilde{Q}_r(e)\} \not\leq \alpha' \text{ (from the definition of } Q(e, U) \text{)}$
 $\Rightarrow \exists \ \beta \in L_0 \text{ such that } \beta \not\leq \alpha' \text{ and } U \in \tilde{Q}_{\beta}(e).$

Therefore,

$$A \in \mathcal{G}_{\alpha}, \ U \in \tilde{Q}_{\beta}(e) \text{ but } A \cap U = \tilde{0} \text{ and } \beta \nleq \alpha'$$

$$\Rightarrow \bigvee \{r \in L_0; \ \exists \ U \in \tilde{Q}_r(e), \ \exists \ A \in \mathcal{G}_{\alpha}; \ A \cap U = \tilde{0}\} \geq \beta \nleq \alpha'.$$

Let $k' = \bigvee \{r \in L_0; \exists U \in \tilde{Q}_r(e), \exists A \in \mathcal{G}_{\alpha}; A \cap U = \tilde{0}\}$ then $\mathcal{G}_{\alpha} \infty_k e$ where $k' \geq \beta \nleq \alpha' \Rightarrow \mathcal{G}_{\alpha} \infty_k e$ where $k' \nleq \alpha' i.e., k \ngeq \alpha$ which is contradictory to the given condition.

Lemma 3.15. Let (X, τ) and (Y, δ) be any two L-fuzzy topological spaces and $f: (X, \tau) \to (Y, \delta)$ be any mapping then $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$.

Proof. For all $x \in X$,

$$f^{-1}(B_1 \cap B_2)(x) = (B_1 \cap B_2)f(x)$$

$$= B_1(f(x)) \wedge B_2(f(x))$$

$$= [f^{-1}(B_1)(x)] \wedge [f^{-1}(B_2)(x)]$$

$$= [f^{-1}(B_1) \cap f^{-1}(B_2)](x).$$

Hence the proof.

Lemma 3.16. Let (X,τ) and (Y,δ) be any two L-fuzzy topological spaces and let Q, \hat{Q} be the gradation of q-neighborhoodness in (X,τ) and (Y,δ) respectively. A mapping $f:(X,\tau)\to (Y,\delta)$ is a gp-map if and only if

$$\forall e \in M(L^X) \text{ and } \forall V \in L^Y, \ Q(e, f^{-1}(V)) \ge \hat{Q}(f(e), V).$$

Proof. We have $\hat{Q}(f(e), V) = \bigvee \{\delta(W); f(e) \neq W \subseteq V\}$. Now

$$f(e) \cap W \subseteq V \implies e \cap f^{-1}(W) \subseteq f^{-1}(V) \text{ and } \tau(f^{-1}(W)) \ge \delta(W),$$

as f is a gp-map. So, $\bigvee \{\tau(U); e \neq U \subseteq f^{-1}(V)\} \geq \bigvee \{\delta(W); f(e) \neq W \subseteq V\}$. So,

$$Q(e,f^{-1}(V)) \geq \hat{Q}(f(e),V), \forall \ e \in M(L^X) \ \text{and} \ \forall \ V \in L^Y.$$

Conversely, let $Q(e, f^{-1}(U)) \ge \hat{Q}(f(e), U)$, $\forall e \in M(L^X)$ and $\forall U \in L^Y$ and suppose f be not a gp-map. Then \exists at least one $U \in L^Y$ such that $\tau(f^{-1}(U)) \not\ge \delta(U)$. Therefore, by Propositions 1.5, 1.6 and 1.7, we have

$$\bigwedge \{ Q(p_x, f^{-1}(U); \ p_x \in M(L^X) \text{ and } p_x \neq f^{-1}(U) \}$$

$$\not\geq \bigwedge \{ \hat{Q}(r_y, U); \ r_y \in M(L^Y) \text{ and } r_y \neq U \}$$

$$\Rightarrow \ \exists \ p_x \in M(L^X) \ \text{such that} \ p_x \neq f^{-1}(U) \ \text{and} \ Q(p_x, f^{-1}(U))$$

$$\not\geq \bigwedge \{\hat{Q}(r_y, U); \ r_y \in M(L^Y) \ \text{and} \ r_y \neq U\}$$

$$\Rightarrow Q(p_x, f^{-1}(U)) \not\geq \hat{Q}(r_y, U), \ \forall \ r_y \in M(L^Y) \text{ with } r_y \neq U.$$

This implies

$$Q(p_x, f^{-1}(U)) \not\geq \hat{Q}(f(p_x), U)$$

(since $p_x \in M(L^X)$ and $p_x \neq f^{-1}(U) \Rightarrow f(p_x) \in M(L^Y)$ and $f(p_x) \neq U$), which is a contradiction. Hence the proof.

Definition 3.17. Let (X, τ) and (Y, δ) be any two *L*-fuzzy topological spaces and $f: (X, \tau) \to (Y, \delta)$ be any mapping and \mathcal{G} be any *g*-filter on X, we define

$$f[\mathcal{G}](B) = \mathcal{G}(f^{-1}(B)), \ \forall \ B \in L^Y.$$

Proposition 3.18. Let (X, τ) and (Y, δ) be any two L-fuzzy topological spaces and $f: (X, \tau) \to (Y, \delta)$ be any mapping then for any g-filter \mathcal{G} on (X, τ) , $f[\mathcal{G}]$ is a g-filter on (Y, δ) .

Proof. (1) As we know $f^{-1}(\tilde{0}_Y) = \tilde{0}_X$ and $f^{-1}(\tilde{1}_Y) = \tilde{1}_X$ so,

$$f[\mathcal{G}](\tilde{0}_Y) = \mathcal{G}(f^{-1}(\tilde{0}_Y)) = \mathcal{G}(\tilde{0}_X) = 0$$
 and $f[\mathcal{G}](\tilde{1}_Y) = \mathcal{G}(f^{-1}(\tilde{1}_Y)) = \mathcal{G}(\tilde{1}_X) = 1$.

(2) $f[\mathcal{G}](B_1 \cap B_2) = \mathcal{G}(f^{-1}(B_1 \cap B_2)) \ge \mathcal{G}(f^{-1}(B_1) \cap f^{-1}(B_2))$, by Lemma 3.15 and (GF3). Therefore, by (GF2),

$$f[\mathcal{G}](B_1 \cap B_2) \ge \mathcal{G}(f^{-1}(B_1)) \wedge \mathcal{G}(f^{-1}(B_2)) = f[\mathcal{G}](B_1) \wedge f[\mathcal{G}](B_2).$$

(3) $B_1 \subseteq B_2 \implies f^{-1}(B_1) \subseteq f^{-1}(B_2), \ \forall \ B_1, B_2 \in L^Y$. Then, by (GF3),

$$f[\mathcal{G}](B_2) = \mathcal{G}(f^{-1}(B_2)) \ge \mathcal{G}(f^{-1}(B_1)) = f[\mathcal{G}](B_1).$$

Hence f[G] is a g-filter on (Y, δ) .

Proposition 3.19. Let (X, τ) and (Y, δ) be any two L-fuzzy topological spaces and $f: (X, \tau) \to (Y, \delta)$ be a gp-map then, for any g-filter \mathcal{G} and for any $e \in \text{Pt}(L^X)$,

$$\mathcal{G} \to e \Rightarrow f[\mathcal{G}] \to f(e).$$

Proof. Let Q and \hat{Q} be the gradations of Q-neighborhoodness in (X, τ) and (Y, δ) respectively and let $B \in L^Y$, then

$$\mathcal{G}(f^{-1}(B)) \ge Q(e, f^{-1}(B)) \quad [\text{as } \mathcal{G} \to e]$$

 $\ge \hat{Q}(f(e), B),$

by Lemma 3.16. This implies $f[\mathcal{G}](B) \geq \hat{Q}(f(e), B)$.

П

Proposition 3.20. Let $f:(X,\tau)\to (Y,\delta)$ be a mapping where (X,τ) and (Y,δ) be any two L-fuzzy topological spaces. If, for any g-gilter \mathcal{G} and for any $e\in M(L^X)$,

$$\mathcal{G} \to e \Rightarrow f[\mathcal{G}] \to f(e)$$

then f is a gp-map.

Proof. Let Q and \hat{Q} be the gradations of Q-neighborhoodness in (X, τ) and (Y, δ) respectively. As $e \in M(L^X)$ so the mapping $Q_e : L^X \to L$ given by $Q_e(U) = Q(e, U)$ is a g-filter on L^X and $Q_e \to e$. So, according to the given condition $f[Q_e] \to f(e)$. So, $\forall V \in L^Y$, $f[Q_e](V) \ge \hat{Q}(f(e), V) \Rightarrow Q_e(f^{-1}(V)) \ge \hat{Q}(f(e), V)$ $\Rightarrow Q(e, f^{-1}(V)) \ge \hat{Q}(f(e), V)$.

Hence, by Lemma 3.16, f is a gp-map.

ACKNOWLEDGEMENT

The authors are grateful to the referees for their valuable comments.

REFERENCES

- 1. M. H. Burton, M. Muraleetharan, & J. Gutiérrez García: Generalised filters. I. Fuzzy Sets and Systems 106 (1999), no. 2, 275–284. MR 1696860
- Generalised filters. II. Fuzzy Sets and Systems 106 (1999), no. 3, 393-400.
 MR 1699733
- C. L. Chang: Fuzzy topological spaces. J. Math. Anal. Appl. 24 (1968), 182–190. MR 38#5153
- K. C. Chattopadhyay, R. N. Hazra & S. K. Samanta: Gradation of openness: fuzzy topology. Fuzzy Sets and Systems 49 (1992), no. 2, 237–242. MR 93f:54004
- K. C. Chattopadhyay & S. K. Samanta: Fuzzy topology: fuzzy closure operator, fuzzy compactness and fuzzy connectedness. Fuzzy Sets and Systems 54 (1993), no. 2, 207–212. MR 93k:54016
- 6. W. Gähler: The general fuzzy filter approach to fuzzy topology. I. Fuzzy Sets and Systems 76 (1995), no. 2, 205–224. MR 96h:54007
- 7. _____: The general fuzzy filter approach to fuzzy topology. II. Fuzzy Sets and Systems 76 (1995), no. 2, 225–246. MR 96h:54007
- 8. U. Höhle: Upper semicontinuous fuzzy sets and applications. J. Math. Anal. Appl. 78 (1980), no. 2, 659–673. MR 82d:54005
- 9. R. Lowen: Convergence in fuzzy topological spaces. General Topology Appl. 10 (1979), no. 2, 147–160. MR 80b:54006

- 10. K. K. Mondal & S. K. Samanta: Fuzzy convergence theory I. J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 12 (2005), no. 1, 75-91. MR 2129455
- P. M. Pu & Y. M. Liu: Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence. J. Math. Anal. Appl. 76 (1980), no. 2, 571–599. MR 82e:54009a
- 12. A. P. Šostak: On a fuzzy topological structure. Rend. Circ. Mat. Palermo (2) Suppl. 11 (1985), 89–103 (1987). MR 88h:54015
- 13. R. Warren: Convergence in fuzzy topology. Rocky Mountain J. Math. 13 (1983), no. 1, 31–36. MR 85e:54006
- Y. Liu: Fuzzy topology. Advances in Fuzzy Systems—Applications and Theory, 9.
 World Scientific Publishing Co., Inc., River Edge, NJ, 1997. MR 99m:54005
- 15. L. A. Zadeh: The concept of a linguistic variable and its application to approximate reasoning. I. *Information Sci.* 8 (1975), 199–249. MR 52#7225a
- (K. K. Mondal) Department of Mathematics, Kurseong College, Kurseong-734203, West Bengal, India
- (S. K. Samanta) Department of Mathematics, Visva-Bharati University, Santiniketan-731235, West Bengal, India *Email address*: syamal_123@yahoo.co.in