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Direct Gradient Descent Control and Sontag’s Formula on Asymptotic
Stability of General Nonlinear Control System

J. Naiborhu, S. M. Nababan, R. Saragih, and 1. Pranoto

Abstract: In this paper, we study the problem of stabilizing a general nonlinear control system
by means of gradient descent control method which is a dynamic feedback control law. In this
method, the general nonlinear control system can be considered as an affine nonlinear control
systems. Then by using Sontag’s formula we investigate the stability (asymptotic) of the

general nonlinear control system.
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1. INTRODUCTION

Stabilization of nonlinear control system has been a
subject of research by many authors. In [1], Tsinias
proved that Lyapunov conditions were sufficient for
asymptotic stabilization of affine nonlinear systems.
Praly, d’Andrea-Novel and Coron [2] designed a state
feedback control law based on control Lyapunov
function. Wei Lin [3] developed sufficient conditions
for general nonlinear control system to be
asymptotically stabilizable via smooth state feedback.
For more information and additional details on
nonlinear feedback stabilization, the reader may refer
to a survey due to Sontag [4].

The purpose of this paper is to apply a new method
“direct gradient descent control method” for
stabilizing asymptotically the general nonlinear
control systems at an equilibrium point which is stable
(asymptotically) if input is zero. In other word, input
of the system is used to improve the stability
performance of the system. The main idea of this
method is as follows. Consider the equilibrium point
as a desired value that we want to reach. Then define a
performance index as a squared error function. Design
a control law to decrease the performance index via
gradient descent method.

The paper is organized as follows. In Section 2, we
state the direct gradient descent control method for a
nonlinear system, while in Section 3 we apply the
gradient descent control to the nonlinear control
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system and investigate the stability (asymptotic) of
system by using affine nonlinear control system
technique(Sontag’s formula). Section 4 shows three
illustrative examples and Section 5 states concluding
remarks.

2. DIRECT GRADIENT DESCENT CONTROL

Consider a nonlinear control system
x(@t) = f(x(O,u(@®),  x(t)=xy,- (D

where x(z) € R" is the state vector and u(¢) e R" is
the control vector.

The aim of control is to decrease a performance
index F(x(¢),u(f)) at any time ¢ along the trajectory of
system (1), and so our problem is formulated as
follows:

decr(e)ase F(x), u(t) 2
u t
subject to x(¢) = f(x(€),u(t)), x(ty)=x;. (3)

As the class of admissible controls, we consider a
space U, consisting of m-dimensional-vector valued
functions which are differentiable [f,¢], and define the
following inner product :

<Uu,v>= Lto u(r)T v(t)dr, 4)

where # and veU,.

In unconstrained optimization problem, problem
(2)-(3) becomes

decr(e)ase F(x(tu),u(?), . (5)
u(t
where

x(60) = () + | /(e ©
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A very broad and perhaps the most important class
of methods for unconstrained optimization is that
which is based upon the so-called gradient descent
methods. By applying gradient descent method, we
obtain as a control law, the first-order ordinary
differential equations

u(t) =—aV, F(x(tu),u(0), (7

where o can become a constant or function of x(z),

u(r), and r. Below, the gradient of performance index

F(x(t;u),u(t)) with respect to u(u(r)) will be derived.
Assume that

A.l [ and F are continuously differentiable on (x,u)

e R"xR™.

A2 f.., f,, F, and F, are Lipschitz continuous.

Definition 1: x(#;u) is Gateaux differentiable, i.e.

for an arbitrary s eU,,
. d R
Sex(tin)=—x(t:u +&5)|ep ®)
de
exists.

Theorem 1: Functional x(¢;%7), defined by (6), is
Gateaux differentiable with

Sox(t;i1) = L’ Vx(t;m)(t) s(t)dr, 9)
0
where
Vx(t;u)(1)
(10)

= f, (x(mu),u() 1), 1n <T<t.

Proof: Integrating (1) from # to ¢ with & +e5
given, we have

x(t;u +¢5)

=x(ty) + L; f(x(t;u +&5),u(t) +es(t))dr. (i

Differentiate (11) w.rt. ¢ and let €¢=0, and then
differentiate it w.r.t. ¢ then finally we obtain

iix(m?nL €5) |
dtde &=0

_ d _
=f. (x(t;u),u(t))gx(t;u +&5) 0 (12)
+ 1, (x(t;1), u(t))s(2).
Since (12) is a time-varying linear differential
. _. d _ .
equation wrt Oex(fu)= ;]—x(t;u +85)|geg, itS
f3
solution is given by
_ t

Sex(6,1T) = jto O(t,1) £, (x(r,u),u(n)s(r)dr, (13)

where ®©(z,7) is a continuous transition matrix

function which have properties
%(D(t, ) = [ (x(;1),u())P(t,1), 1y < T M,
o(r,71)=1.

According to (4), 8:x(#;) can be rewritten in the
inner product form

Sex(t;u) =< Vx(t;u),s >,

where
Vx(t;u)(1) o
- nemaEy o pstse D
such that
dgx(t;u) = I: Vx(t;@)(t) s(t)dr. (15)
0
0

Theorem 2: By defining V ,x(#;u4)=Vx(#t;u)1),
gradient of objective function F(x(t;u),u) with
respect to ¢ at time ¢ is

vV, F(x(t;u),u)
= [ D, u@) F (@i, u@)’ (16)
+ F, (x(t;i),u()) .
Proof: By chain rule,
V, F(x(t;w),u)
_ 7 _ r (7)
= (Fe (x(t,u), )V, x(t;u))" + (F, (x(tu),u))" .
From (10) we obtain
Vx(t;7)(2)
_ T T _ r (18)
= L (x@u),u(®) O, + f, (x(Gi)u)” .

By substitution equation (18) into equation (17) we
obtain

vV, F(x(t;u),u)
= £, (1), u(®) Fo (x(t;),u(t)) (19)
+ F, (x(t;i0),u(@))! .

0
Thus, the dynamic control (7) becomes

(t) = —a(x(2), u(t)) { £, O, u(®) F (e, @), ()
+ F, (x(smu@) |, 20)

where o(x(¢),u(t)) is a matrix function. This control

law is called as the direct gradient descent control
[5,7].

Remark 1: The same result which is stated in
Theorem 2 can be found in [7] but the way of proof is
different.
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3. PERFORMANCE IMPROVEMENT

In this section we apply the direct gradient descent
control (20) to stabilize the nonlinear control system

x(@) = f(x@,u(®) 21

where xe R" is the state, ue R™ is the control

input. Without loss of generality, let (0,0)e R" xR

be an equilibrium point of (21), f(0,0)=0.
Assume that system (21) satisfies  the following
assumption.

A.3 There exists a function V:R"~> R, with ¥{(0) = 0,
which is continuous, positive definite and
radially unbounded such that the unforced
dynamic system of (21), namely x(2) = f{x(¢),0)
is globally asymptotically stable, i.e., V,(x(t))
S(x(6),0)<0, x=0.

First we define the performance index

F(x(t),u(t)) =V (x(@) +u@®) Ru(t), (22)

where R is a matrix constant, R>0. Then we determine
the value of a(x(¢),u(t)) by Sontag’s formula such

that the extended nonlinear system

X(@0) = f(x@,u@®), x(th) =Xy (23)
u(t) = —a(x(0),u(O)V, F(x,u), ulty)=uy @4

is asymptotically stable about (x(£),u(s))=(0,0). The
most important thing is to guarantee the existence of
a(x(2),u(?)).

Remark 2: Consider (22). If u(f) = 0 then F(x(¢),
u(t)) = V(x(¢)). In other words performance index
becomes Lyapunov function and so we don’t need to
design control input u(¢) for only stabilizing system.
With u(f) = 0 we can not do anything to increase the
rate of convergence. By adding u(f) to the system,
however, we have freedom to accelerate the rate of
convergence.

Remark 3: It would appear that when x = 0 is
globally asymptotically stable as assumed by
assumption A.3, then the global stabilization of the
whole system should not be difficult. The following
simple example [8] show that this is not so. Consider
system

% =-x+ux’. (25)

Disturbed by exponentially decaying input
u=u(0)e . (26)

The substitution of (26) with y=1 into (25) yields
the equation

X =—x+u(0)e "x?. 27)

Whose explicit solution is

(1) = , 2x(0) . (28)
x(0)u(0)e™ +[2 — x(0)u(0)]e’
It is easy to see that if x(0)u(0) < 2, then x(f) will
converge to zero as ¢ —> o« . However, if x(0)u(0) > 2,
then at the time

_ lln x(0)u(0)
x(0)u(0) -2

esc
2

the difference of the two exponential terms in the
denominator becomes zero, that is

[x(O)|> w0 as t —t,,.

Thus, disturbed by an exponentially decaying input
u(?), the nonlinear system (25) can become unstable,
or even worse: its state may escape to infinity in finite
time.

Before we prove the existence of o(x,u), below

we recall the Sontag’s formula which will be used to
investigate the stability of the extended systems (23)-
(24).

Sontag’s formula for
nonlinear control system [4,8]

A smooth positive and radially unbounded function
V*:R"- R is called a control Lyapunov function (clf)
for 21) if

multi input affine

inf { VA (x) f(x,u)} <0, Vx#0. (29)

ueR

Consider the affine nonlinear control system

x=f(x)+gxu, xeR", ueR™ (30)
In componentwise form, (30) becomes
X = f;'(x)"‘gil(x)’j‘] J;"'*‘gim(x)um, 31)
1= ,- - .’n_

Let éj(x) = [glj (x),-- > &nj (x)]T , then (31) becomes

x=f()+ &y +--+ g, (Xu,,. (32)

If V(x) is a clf for (32), then a particular stabilizing
control law £;(x), smooth forall x=0, is

u; = kj (x)
~(re @z ) (s

S (rE@re) e (x)g(x)l\zjz
- (33)

(e cozel)
N

Ve (g0

Ve (0g()]=0
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where j=L---,m.
In vector form, the general Sontag’s formula is

u = k(x)

{rwew) (s

1
o (rere) + Vf(x)g(x)Hsz
- (34)
Arese]) " rese]=o
0; Vi (g =o.

Existence of a(x,u)

In the following we show that the existence of
a(x,u) is guaranteed.

Consider the performance index F{(x,u) as a control
Lyapunov function candidate for system (23)-(24).
Calculate time derivative of the performance index
F(x,u) along the trajectory of system (23)-(24) to
obtain
F(x,u) = F,(x,u)% + F,(x,u)i

=F, (e,u) f(x,u)— F,(x,u)a(x,u)V, F(x,u) .

(35
Our objective is to find « (x,u) such that F (x,u) <O0.
It F,(x(®),u(t))#=0 and V, F(x,u)#0,Vt>t,, we
can find a(x(s),u(r)) such that F (x(),u(t)) <0 by
Sontag’s formula. (Note that we let o (x,u) correspond
to a stabilizing control law k(x).) The most crucial step
is to determine a(x,u) at a time f=t¢,, f, >, such
that F,(x(t.),u(t,))=0 or V,F(x,u)(t,)=0. For
this case, we can not choose a(x(¢,),u(f,)) to make
F (x(t),u(t;)) < 0 because the value of F (x(t.),u(t.))
depends only on the value of F, (x(t).u(t))
1 (e(t)u(t)). Hence, we need an assumption to
assure the condition F, (x(2.).u(2.)) f (x(to),u(t)) <0
if F,(x(4,),u(t,))=0 or V,F(x,u)(t.,)=0 and then
we can choose any value of a(x(z,),u(z.)), for
instance a(x(z,),u(t,))=0.

Now we check when F,(x(#,),u(t.))=0 or
Vo'e {u](z,)=0 happens. From (22) can be shown
that F,(x(,),u(t.))=0 at u(t,)=0, and from the
understanding of the gradient descent, V,F(x,u)(t,)
=0 is achieved at u(t.)=0.Thus F, (x(z.),u(t,))=0
or V, F(x,u)t,)=0 at u(t)=0. Then if F,(x(z,),
u(t.))=0 or V, F(x,u)t,)=0 then u(z,) in F,(x(t,),
u(t;)) x(t,) can be substituted with 0, and becomes

Fo(x(1,),0) f(x(z,),0) . From equation (22), Fi(x(t.),0)
SAx(£),0) = Vet ))f(x(:),0) and by assumption A.3,
we have F, (x(¢,),0)f(x(¢,),0)<0. Thus, if system
(23) satisfies assumption A.3, then the condition

F (x,u) f(x,u) <0,
if F,(x,u)=0 or V,F(x,u)=0 atatime t
is satisfied.

From the above explanation, by assumption A.3
there exists a(x,u) such that the performance index

(22) satisfies

F(x,u) = F(x,u) f(x,u)
- F,(x,u)a(x,u)V, F(x,u) (36)
<0.

Now, let us consider the equation (23)-(24) as an
affine nonlinear control system in which a(x,u) is
regarded as a “control input”. Then (23)-(24) can be
expressed in the form

i=a(z)+a b2 f(z,0), €1))
where
z=[x" &1, a@=[f "(x ) 01", b=[0— V, F(x,u)" 1",

0 0
&= {0 } From (36) and (37), we have
/]

inf {F(2)f(z0)}<0, Vzz0. (38)

Q€L p

Hence, the pérformance index (22) is a control
Lyapunov function for system (23)-(24).

In the following, we find a(x,u) by general
Sontag’s formula. In this paper we consider a(x,u)
as a diagonal matrix mxm, i.e., o; =0, if i#j;

Lj=1--,m. Let Vqu(x,u) is element of vector

vV, F(x,u), j=1,---m,then (37)can be written as

| 0n><1 1 )
-V, F(x,u)
Rt
= + 011 0
u 0r><1 .
- O -
_ 0, -
0
o ta,, : (39
0
—Vum F(x,u)

By applying the general Sontag’s formula (33) we
can find a as follows.
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o =k;(x,u) where
kj (x:u)

- (R, G0V, Feew))(Foean f (e
+((Fx (x,u) f(x, u))2 +

Mz

(F (U, F, u)) (40)

~.
il
—

& 2
]Z:I(Fuj (x,u)Vuj F(x,u))
if

Z(F (e, )V, F(x, u))

Jj=l
and k;(x,u)=0 if

Z(F (), F(x, u))
j=1
=1,
Let K(x,u) is a diagonal matrix »xr with k(x,u);
Jj=1,--,r as diagonal element. By substituting o (x,u)=
K(x,u) in (40) into (35), we have

F (x,u)|

afx,u)=K (xi}

= F (x,u) f(x,u) - Zk(xu)F (x,u)V, F(xu)
J=1

= F,(x,u) f(x,u) - (Z(F (x,u)V,, F(x u))}
J=l

(G (e0) +{ (F G £ (e

2\2 .
+[Z(F (1), F(x, u)) J (41)

J=1

3

m 5 -1
{2 (Fuj (09, F(x,u)) J

=i
=F (xau)f(x’u)_

[Z(F (1), F(x, u)) ](Fx(x,u) Flxu)

Jj=1

H(F s )+

£

1
2

N gE]

(F (e, Flx, u)) T

—_

[Z(F (x,u)V, F(x u)) J_

Jj=l

_((Fx(x,u) Feu) +

1

m ) 232
(Z (£, 09, Fx) J ,

=

which guarantees the trivial solution (x = 0; u = 0) of
system

%= f(x,u), (42)
i = —K(x,u)V, F(x,u) (43)

is asymptotically stable.
To accelerate decreasing of performance index
F(x,u), we modify o in (40) becomes

oy :];j(x,u) where
]?j(x’u)
= (B, a0V, Fx) | (Pt f (50

(| (et few)’ (44)
1

{;

;

(F (x,u)V,, F(x u)) ]2 2
(F (x,u)Vv, F(x u))

Ms

I
—

Mz

(F (U, F, u)) ]_1

1

I

if

Mz

J=1
and f J(x,u)=0 if

in: F, (x v, F(xu))
j=1
=1,

,0 and vy, y>0. vy is called as speed

J
parameter.

By substituting o(x,u)= K(x,u) in (44) into (35),
we have

. 2
F(x,u)‘ == (Fx(x,u)f(x,u)) (45)
a(xu)=K(x,u)

m 232
(Z(F (x,u)V, F(x u))} .
Jj=1

Thus, by taking o '1,---,# , the extended system

=
(23)-(24) becomes asymptotically stable.
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In [5], for single input we have been proved that the
system (23)-(24) is still asymptotically stable, even if
a(x,u) is a positive constant. Furthermore, in case
a(x,u) is a positive constant the assumption A.3,
“globally asymptotically stable” can be replace by
assumption “globally stable”. Under an appropriate
assumption the extended system

x=f(x,u), (46)
u=-oV,F(x,u) 47

is still globally asymptotically stable (see [6] for
proofs).

4. EXAMPLES

In this section, we give three examples to show
how our technique is applied.

Example 1: Consider a single input nonlinear
control system

H1=-x 05,

).52 ==Xy +u.
Take the equilibrium point for this system is (0,0,0).
This system is stable asymptotically if « = 0. Based on
lyapunov design, the input « is equal to —x;x, that
make system is still asymptotically stable.

To calculate the direct gradient descent control,

define the performance index
o

F(x,u) =%[x12 +x% +u2). (48)
Then we have the gradient of performance index

V, F(x(tu),u)=x, +u,
the direct gradient descent control (DGDC)

U= —(x(x,u)(x|2 +u),

with
2 2
K(x,u)=a(x)+y\/(2((x;)) G (49)
where

a(x) = —xlz + xlx% - x% + XU,
b(x) =u(x, +u).

Simulation Initial Condition : x;(0) =1, x(0)= —1,
#(0) = 0.5. Simulation results are shown in Fig. 1 for
x1() and in Fig. 2 for xx(f) with v = 1.123. (x;a(t) =
x(8) with DGDC, x;5(f) = x,(t) with u=—x1(0)x2(£), xc(£)
= x{t) with w(£) = 0.)

Example 2: Consider a single input nonlinear
control system ‘

o
o

x1c(t)

o
©

o
3

o
@
T

x1a(t)

initial value
o o
P

o
w

02| x1b(t)

01

[s)

L L L ! " . L
0 1 2 3 4 5 6 7 8 9 10

time(t)
Fig. 1. x,(2).
0.4
02r x2a(t)
ol
o _02F x2b(t)
ZE
% S xaety
—0.4
-08
-08
o 3 B 3 ) s s 7 s s 10
time(t)
Fig. 2. x2(f).

)Ejl ==Xy —Xu,
) 3
X2 =X —X).

Take the equilibrium point for this system is (0,0,0).
This system is stable if 2(¢)=0.
Define the Performance index :

F(x,u) = %(xlz gl (50)

Next we find the gradient of performance index,
gradient descent control and a(x,u) respectively.

The gradient of performance index :
V, F(x(t;T),u) = xt +u.
The gradient descent control algorithm :

U= —()L(x,u)(xl2 + u).

2 4 2 2 2 2
—X{u-x; +y\/(—x1 u—xg) +Hu(xf +u))

u(x12+u)

K(x,u)=

Simulation Initial Condition : x;(0) = 0.8; x2(0) =
0.9, u#(0)=0.5. Simulation results are shown in Fig.
3 for u{tr)=0 and in Fig. 4 for system which
gradient descent control is applied with y=10.1.

Example 3: Consider the Brockett integrator[9] as
described by the following equation :
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1

0.8

06|

0.4

state

0.2

o

-0.2

0.4

0.6 2 L . L
0 10 20 30 40 50 60 70

time (t)

state

. L ) ) . .
[ 10 20 30 40 50 60 70
time (1)

Fig. 4. o (e(6),u())=K(x(),u(f)) and y=0.1.

X = U,
Xz = uz, (51)
X3 = XUy — Xl

Besides uncontrollable eigenvalue at the origin, this
system is an example to show that the smooth
feedback fails [9] to stabilize that system
asymptotically. In this paper, we stabilize (51) by
dynamic feedback control (43).

Let the performance index

F(x,u) =%(x12 +x§ +x32 +ul2 +u§). (52)

By applying the direct gradient descent control to
nonlinear system (51) we have the extended system

Xl = U,

X2 = U,

X3 = XjUy = XpUy, (53)
i = —k(xu)(x —xx5 +uyp),

uy = —ky(xu)(xy +xx3 +uy),

with

initial value

L L L L 1
10 20 30 40 50 60
time(t)

Fig. 5. a(x(®),u(?)) = K(x(t),u(t)) and y=0.801.

2 21252
)= a(z+yyz“+(a”+b*)

a2 +b2

2 23,252
a0~ b(z+y\/z +(a“+b%)

a2 +b2

B

B

where
a= x4(x1 — Xy X3 + X4), b= x5(x2 + X1 X3 + UZ),
Z = XX + Xy X5 + X3(X] —XpX3 + Xy).

Simulation Initial Condition : x;(0) = 0.1; x5(0) =
0.1; x3(0) = 0.5; #1(0) = 0.5; ux(0) = 0.5 Simulation
results are shown in Fig. 5 for system which gradient
descent control is applied with vy =10.801.

5. CONCLUSIONS

We studied the direct gradient descent control for
stabilizing the single input general nonlinear control
systems when the unforced system is asymptotically
stable. Direct gradient descent control and original
system form a new system (extended system) which
can be considered as affine nonlinear control system
with a(x,u) as a control variable. By using Sontag’s

formula, o(x,#) can be calculated such that the
extended system become asymptotically stable.
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