DOI QR코드

DOI QR Code

User-Class based Service Acceptance Policy using Cluster Analysis

군집분석 (Cluster Analysis)을 활용한 사용자 등급 기반의 서비스 수락 정책

  • 박혜숙 (경인여자대학 컴퓨터정보기술학부) ;
  • 백두권 (고려대학교 정보통신대학 컴퓨터학과)
  • Published : 2005.06.01

Abstract

This paper suggests a new policy for consolidating a company's profits by segregating the clients using the contents service and allocating the media server's resources distinctively by clusters using the cluster analysis method of CRM, which is mainly applied to marketing. In this case, CRM refers to the strategy of consolidating a company's profits by efficiently managing the clients, providing them with a more effective, personalized service, and managing the resources more effectively. For the realization of a new service policy, this paper analyzes the level of contribution $vis-\acute{a}-vis$ the clients' service pattern (total number of visits to the homepage, service type, service usage period, total payment, average service period, service charge per homepage visit) and profits through the cluster analysis of clients' data applying the K-Means Method. Clients were grouped into 4 clusters according to the contribution level in terms of profits. Likewise, the CRFA (Client Request Filtering algorithm) was suggested per cluster to allocate media server resources. CRFA issues approval within the resource limit of the cluster where the client belongs. In addition, to evaluate the efficiency of CRFA within the Client/Server environment the acceptance rate per class was determined, and an evaluation experiment on network traffic was conducted before and after applying CRFA. The results of the experiments showed that the application of CRFA led to the decrease in network expenses and growth of the acceptance rate of clients belonging to the cluster as well as the significant increase in the profits of the company.

본 논문에서는 마케팅에서 주로 적용되는 CRM(Customer Relationship Management)의 군집분석 방법을 활용하여 콘텐츠 서비스를 이용하는 고객들을 서비스 패턴에 따라 세분화(Segmentation)하고, 군집별로 미디어 서버의 자원을 차별적으로 할당하여, 기업의 수익성을 높이기 위한 새로운 정책을 제시하였다. 새로운 서비스 정책의 구현을 위해 첫째, 고객 데이터에 대해 군집분석 중에서 K Means Method를 적용하여 고객들의 서비스 패턴 (총 사이트 방문 횟수, 서비스 종류, 서비스 이용 기간, 지불금액, 평균 서비스 시간, 사이트 방문 당 서비스 요금)과 수익에 대한 기석도 둥을 분석하였다. 고객들은 수익에 대한 기여도에 따라 4개의 군집으로 분류되었다. 둘째, 군집별로 미디어 서버 자원을 할당하는 알고리즘인 CRFA(Client Request Filtering Algorithm)를 제시하였다. CRFA 는 고객이 속한 군집의 자원 한도 내에서 승인제어를 실시하는 기능을 수행하였다. 분석된 결과에 의하면 CRFA를 적용하였을 때 기업의 네트워크 비용은 감소하고 기업의 수익에 기여도가 높은 군집에 속한 고객들의 수락률이 높아졌음을 알 수 있었다.

Keywords

References

  1. Jun-kyun Choi, 'Technology of the Assurance of QoS for Next Generation Network', Journal of KISS, Vol.21, No.8, pp.51-66, 2003. 08
  2. E. S. Hyun, Y. J. Rhee, and T. Y. Kim, 'Differentiated-HTTP for Differentiated Web Service', Journal of KISS, Vol.28, No.1, pp.126-135, 2001. 03
  3. Y. J. Lee, E. S. Hyun, T. Y. Kim, 'Connection Management for QoS Service on the Web', Journal of Network Computer Applications, Vol.25. No.1, 2002. 10
  4. Won-jun Lee, Jaideep Srivastava, 'A Market based Resource Management and QoS Support Framework for Distributed Multimedia System', Conference on Information and Knowledge Management, Vol.1, No.1, pp.472-479, 2000 https://doi.org/10.1145/354756.354855
  5. Wooyoung Kim, S. Graupner, A. Sahai, D. Lenkov, C. Chudasama, S. Whedbee, Yuhua Luo, B. Desai, H. Mullings, Pui Wong, 'Web E-speak: facilitating Web-based e-services', IEEE Multimedia, Vol.9, No.1, pp.43-55, 2002. 01 https://doi.org/10.1109/93.978353
  6. Hea-Sook Park, Doo-kwon Baik, 'User Request Filtering Algorithm for QoS based on Class Pority', Journal of KISS, Vol.10, No.5, pp.487-492, 2003. 10
  7. Alex Berson, Stephen Smith, Kurt Thearing, 'Building Data Mining Applications for CRM', McGraw-Hill, pp.4-14, ISBN 0-07-134444-6
  8. W. Kamakula, 'A Least Squares Procedure for Benefit Segmentation with Conjoint Experiments', Journal of Marketng Research, pp.157-167, 1998. 5 https://doi.org/10.2307/3172647
  9. Kye-sun An, Se-Jin Go, Jun Jiong, Phill-Kue, Rhee, 'Generator of Dynamic User Profiles Based on Web Usage Mining', Journal of Korea Information Processing Society, Vol.9-B, No.4, pp.389-398, 2002. 8 https://doi.org/10.3745/KIPSTB.2002.9B.4.389
  10. M. Wedel, W. Kamakula, 'Market Segmentation: Conceptual and Methodological Foundation, Kluwer Academic Publisher, 2000
  11. Tae Hyup Roh, Ingoo Han, 'Customer Relationship Management Under the Environment of Internet Business', Telecommunications Review, Vol.12, No.1, pp.50-60, 2002. 2
  12. Moon-Koo Kim, Dong-Heon Jeong, Kyoung-Sook Park, 'An Empirical Study on the Determinants of Customer Loyalty in Mobile Telecommunication Services', Telecommunications Reviews, Vol.12, No.6, pp.970-984, 2002. 12
  13. Sang-Hee Rou, Su-Kyung Baik, 'Market Segmentation of the Clients for CRM of Health Service', Journal of Health Care Marketing, Vol.3, pp.22-34, 2002