Abstract
Since sentences are the basic propositional units of text, their themes would be helpful for various tasks that require knowledge about the semantic content of text. Despite the importance of determining the theme of a sentence, however, few studies have investigated the problem of automatically assigning the theme to a sentence. Therefore, we propose a sentence theme allocation scheme based on the head-driven patterns of sentences in encyclopedia. In a serious of experiments using Dusan Dong-A encyclopedia, the proposed method outperformed the baseline of the theme allocation performance. The head-driven pattern 4, which is reconfigured based on the predicate, showed superior performance in the theme allocation with the average F-score of $98.96\%$ for the training data, and $88.57\%$ for the test data.
기존의 주제 관련 연구들은 문서에 자주 등장하는 용어를 주제로 간주하는 등 문서에서 다루는 주제에 대한 정의가 모호하다. 또한 문서를 구성하는 기본 단위인 문장의 주제가 문서 요약 및 정보 추출 등의 연구 분야에 중요하게 활용될 수 있음에도 불구하고, 이에 대한 고려 없이 문서 전체의 주제를 추출하고 할당하는 연구가 대부분이다. 따라서 본 논문에서는 문장 단위의 주제 처리에 대한 기본 연구로서, 백과사전 영역에서 효과적인 중심어주도패턴에 기반한 문장주제 할당 기법을 제안하였다. 두산동아 백과사전 인물분야 2,381문서를 대상으로 성능을 분석해본 결과, 제안된 기법이 비교기준보다 향상된 성능을 보였으며, 특히 제안된 네 가지 중심어주도 패턴 중 술어를 기반으로 구성된 중심어주도패턴 유형 4가 학습집합에 대하여 평균 $98.96\%$, 실험집합에 대하여 $88.57\%$의 성능(F-score)으로 주제할당에 가장 효과적임을 알 수 있었다.