International Journal of Management Science
Vol 11, No 1, May 2005

An Algorithm for the Graph Disconnection Problem®

Young-Soo Myung™

Department of Business Administration,
Dankook University, Cheonan, Chungnam 330—714, Korea

Hyun-joon Kim
Department of Management Information Systems,
University of Ulsan, Ulsan, Korea

(Received Sep. 2003 ; Revised Apr. 2004/Aug. 2004 ; Accepted Jan. 2005)

ABSTRACT

We consider the graph disconnection problem, which is to find a set of edges such that the total cost
of destroying the edges is no more than a given budget and the weight of nodes disconnected from a
designated source by destroying the edges is maximized. The problem is known to be NP—hard. We
present an integer programming formulation for the problem and develop an algorithm that includes a
preprocessing procedure for reducing the problem size, a heuristic for providing a lower bound, and a
cutting plane algorithm for obtaining an upper bound. Computational results for evaluating the per—
formance of the proposed algorithm are also presented.

Keywords: Integer programming, Graph disconnection, Cutting plane algorithm

1. INTRODUCTION

The graph disconnection problem (GDP) is defined as follows: We are given an
undirected graph G=(V,E) with a designated source node, which we will refer to
as node 1, a cost function ¢ which assigns a destruction cost to each arc, a weight
function w which assigns a gain to each node, and a budget b that we can spend
for destroying edges. The objective of the problem is to find a set of edges such

This work was supported by Korea Research Foundation Grant (KRF-2002-041-B00144).
" Email: myung@dankook.ac.kr

49

50 MYUNG AND KIM

that the total cost of destroying the edges is no more than a given budget and the
sum of weights on the nodes disconnected from a source node is maximized.

Martel et al. [6] have introduced the GDP and have shown that the problem
with unit costs and weights is NP-hard. They have also presented an algorithm
which enumerates all cuts whose cost less than or equal to the budget. Of course,
their algorithm is an exponential time algorithm. Although no research on the
GDP other than the Martel et al.’s work has been found, there exist similar ones
on network attack. Cunningham [3] and Gusfield [5] have considered a problem of
minimizing the ratio of the edge destruction cost to the number of disconnected
components. They have presented strongly polynomial time algorithms for this
problem.

Martel et al.’s study on the GDP is motivated by a need to evaluate the vul-
nerability of a network to attacks. The more vulnerable to attacks a network 1is,
the less survivable it is. Survivability of a network is one of the most important
issues in designing present-day communication networks. As fiber optic technol-
ogy rapidly permeates communication networks, the high capacity of fiber links
makes communication networks become to have relatively sparse network struc-
tures in comparison to the high redundancy of older systems. Such sparse net-
works, though cost-effective, are vulnerable to serious service disruptions follow-
ing the failure of key components. Cosares et al. [2] noted that survivable net-
works are generally more expensive than those with less robust designs, and thus
it 1s essential to quantify the trade-offs between cost and survivability. Wu [7]
and Grotschel, Monma, and Stoer [4] also identified network survivability as one
of the most significant issues to be considered when designing communication
networks.

In this paper, we develop a practical algorithm to solve the GDP. As the prob-
lem is NP-hard, we are focusing on producing a feasible solution of good quality
and strong upper bounds for the problem. Even in the case that we want to ex-
actly solve the problem, we can use those procedures to implement a branch and
bound method. This paper is organized as follows. The next section introduces the
notation we use and describes some properties of the GDP. In Section 3, we pro-
pose a heuristic to produce lower bounds of the problem and the preprocessing
procedure that enables to reduce the problem size. In Section 4, we present a
mathematical programming formulation of the problem and develop a cutting
plane algorithm for solving a linear programming (L.P) relaxation to obtain upper
bounds of the problem. In Section 5, we present a numerical example to illustrate
the proposed algorithm. Computational results for evaluating the performance of
the proposed algorithm are presented in Section 6.

AN ALGORITHM FOR THE GRAPH DISCONNECTION PROBLEM 51

2. NOTATIONS AND PROPERTIES

In a given undirected graph G =(V, E), Vis a set of nodes and E is a set of undi-
rected edges. We allow multiple edges in G but no self-loops. Node 1 represents
the designated source node and let Vi=V1{1}. For ScV, &(S) represents the set of
edges in E with one end node in S and the other in V1S. For Sc 8'cVi, §(S) is
called a 1-S cut. In other words, 1-S cut is a set of edges whose removal discon-
nects the subset of nodes S from node 1. We define a min-cost 1-S cut as a 1-S cut
with the minimum edge costs and a maximum min-cost 1-S cut as a min-cost 1-S
cut such that the sum of weights for the nodes in S part is the largest. Later, we
will show that for every ScVi, the maximum min-cost 1-S cut exists uniquely.
Consider an example presented in Figure 1, where the edge costs are shown above
the corresponding edges. We assume that the node weight of each node is 1 and
our budget for destroying edges is 3. Let’s define the following five subsets of Vi:
S; ={4}, S2 ={2, 4}, Sz ={4, 5}, S4 ={2, 4, 5}, S5 ={2, 3, 4, 5}. Then by definition, all of
§(8S1), (S2), 6(S3), 5(Ss), 5(Ss) are 1-{4} cuts and the first four cuts are min-cost
1-{4} cuts. Among them &(S4) is the maximum min-cost 1-{4} cut.

We also use the notation for the summation of edge costs and node weights
such that c(E") :ZQEE,c(e) for any E'cE and w(S) :Ziesw(i) for any ScVi.

We assume positive demand and cost. We will call a subset of nodes ScVi a sepa-
rable node set, if the value of a min-cost 1-S cut is less than or equal to our budget
Therefore, the nodes in a separable node set can be disconnected from node 1
while keeping our budget restriction. Then, the GDP can be described as the prob-
lem of selecting a separable node set with maximum weights, that we call an op-
timal separable node set. In the example in Figure 1, {2, 4, 5} is a separable node
set but {3, 4, 5} is not.

Figure 1. An example network

52 MYUNG AND KIM

The following observations on 1-S cuts will be useful when we develop an al-
gorithm for the GDP.

Lemma 1 Suppose that Si, SecVi. If §(S1) and 6(S2) are min-cost 1-S cuts,
then so is 6 (S1US2).

Proof. Itis well known that cut cost function ¢(6(S)) satisfies the following sub-
modularity condition: ¢(&(S1)) + ¢(5(S2)) 2 c(5 (S1nS2)) + ¢(5(S1US2)). From the
fact that §(S1) and §(S2) are min-cost 1-S cuts, both &§(S1nS2) and &§(S1US2)
should be min-cost 1-S cuts. O

Corollary 2 For every S ¢ Vi, the maximum min-cost 1-S cut exists uniquely.

Corollary 3 For Sic Sec S < Vi, if 6(S) is the maximum min-cost 1-S1 cut,
then it is also the maximum min-cost 1-Sz cut.

Corollary 4 If S < Vi is the optimal separable node set for the GDP, then §(S)
is the maximum min-cost 1-S cut.

The maximum min-cost 1-S cut can be derived by solving a maximum flow
problem with node 1 as a single source and the nodes in S as multiple sinks. Note
that the nodes in node 1 part of the maximum min-cost 1-S cut can be identified
by finding nodes reachable from node 1 in the residual graph for the correspond-
ing maximum flow problem. For the maximum flow algorithms and the definition
of the residual network, refer to Ahuja et al. [1].

3. HEURISTIC AND PREPROCESSING PROCEDURE

In this section, we develop a heuristic of producing a feasible solution and a pre-
processing procedure that reduces the problem size. Our heuristic 1s an add-type
heuristic that iteratively selects a node to construct a separable node set. Based
on Corollary 4, we always maintain the selected subset of nodes at each iteration,
say S, such that §(S) is the maximum min-cost 1-S cut. For this purpose, when
we include a node ie Vi\S into the current set S, we include all nodes constituting
the S U {i} part of the maximum min-cost 1-(S u {i}) cut.

Now we explain how our heuristic selects a node to be included into the cur-
rent set S at each iteration. Note that a node e Vi\S can be included into the cur-
rent set S only when the min-cost 1-(S U {i}) cut value is no more than our budget.
The quality of the obtained solution depends on how to select a node among sev-

AN ALGORITHM FOR THE GRAPH DISCONNECTION PROBLEM 53

eral candidate ones. We have tested three different strategies. The first strategy,
called Algorithm LB1, is to select a node such that the ratio of the increased node
weights to the increased edge costs is maximized. The second strategy, called Al-
gorithm LB2, is to select a node with the maximum weight first. The last one,
called Algorithm LB3, uses the result of an LP relaxation which will be intro-
duced in the next section. LB3 selects a node whose corresponding variable in an
LP relaxation has the most positive value. We will report the computing experi-
ments of the three different strategies in the section on computational results.

In order to determine whether a node can be included without violating the
budget constraint, we need to calculate maximum min-cost 1-(S v {i}) cuts for all
i e VI\S, that is, we need to solve | Vi\S| maximum flow problems. In our heuris-
tic, however, to avoid computational burden, we use §(S U S)) instead of the maxi-
mum min-cost 1-(Sw {i}) cut where &(S;) is the maximum min-cost 1-{i} cut, for
each ¢ € Vi\S. Note that if the sum of costs for the edges in §(S U S;) is no more
than our budget, so is the min-cost 1-(S U {i}) cut value. When calculating a ratio
with respect to a node i in Algorithm LB1, we also use §(Su S)) as the maximum
min-cost 1-(S U {i}) cut.

As we already mentioned, when we include a node i e V1\S into the current
set S, we include all nodes constituting the S u {i} part of the maximum min-cost
1-(S v {i}) cut. For this purpose, however, we don’t use & (S U S;) but exactly calcu-
late the maximum min-cost 1-(S U {i}) cut. Initially, we compute §(S;) for each
ie V1. By using that information, we develop a preprocessing procedure that re-
duces the problem size. Our preprocessing procedure is based on the following
observation.

Remark 1. If ¢(6(S:))>b for any i € V1, the cost of every cut disconnecting 1 and i
is more than our budget. In this case, any subset of V1containing node i can not
be an separable node set, i.e., can not be a feasible solution. Therefore, in order to
find an optimal separable node set we can limit our search to the subsets of Vi\{i}

Remark 1 implies that if ¢(5(S:)))>b for any i € Vi, we can find an optimal so-
lution from the reduced graph obtained from the original graph by contracting
nodes 1 and i into node 1. When the two nodes 1 and i are contracted, edges inci-
dent to node i are replaced by the edges incident to node 1 and self-loops formed
by edges connecting 1 and i are removed. Notice that for every ScVi\{i}, &S) in
the original graph is the same as that in the reduced graph.

Our heuristic of constructing a separable node set and a preprocessing proce-
dure 1s formally described as follows.

54 MYUNG AND KIM

Algorithm LB1 (LB2, LB3)

Input: G=(V, E), {ce}, {wi}, b.
Output: A separable node set S.
for each i eV1 do
construct the maximum min-cost 1-{i} cut, & (S))
if ¢(5(S:)) > b, contract nodes 1 and i [preprocessing]
S«
while I ={f e VI\S | ¢(6(SUS) < b)= T do
select a node tel with the maximum ratio of w(S:\S) to ¢(5 (SUS)))-c(5(S))
(with the maximum w(S:\S) in Algorithm LB2)
(with the most positive fractional solution in Algorithm LB3)
set S such that §(S) is the maximum min-cost 1-(S v {i}) cut.

4. CALCULATING UPPER BOUNDS

In this section, we describe the procedure for computing upper bounds of the prob-
lem. For this purpose, we first present an integer programming formulation of the
problem and obtain an upper bound by solving an LP relaxation of the proposed
integer programming model.

4.1 Integer programming formulation

In this subsection, we formulate the problem as an integer programming problem.
We define edge variables x(e) on edge set E such that x(e)=1 if an edge e is de-
stroyed and x(e)=0, otherwise. We also define node variables y(i) on node set V1
such that y(i)=1 if a node ¢ is disconnected from node 1 and y()=0, otherwise. Let
P(i) for each ie V1 be the set of paths between node 1 and i. For any path PeP(),
we let E(P) denote the set of edges in path P. Then GDP can be represented as
the following 0-1 integer programming problem.

(IP) max z w(@)y(@) (1)
eV,

st. Y cle)x(e)<h, Q)
ecE

Z x(e) 2 y@), VPeP@),ieV] 3)

ecE(P)

AN ALGORITHM FOR THE GRAPH DISCONNECTION PROBLEM 55

x(e) € {0,1}, Vee E 4)
i) e 0,1}, vieV, ®)

The constraint (2) reflects our budget restriction and the constraints (3) ensure
that node i is disconnected from node 1 only when at least one edge is destroyed
from each path connecting the two nodes.

We will solve an LP relaxation of (IP) to obtain upper bounds. To obtain tight
bounds we also add a family of valid inequalities. Those inequalities are redun-
dant to (IP) but provide better bounds when added to the LP relaxation of (IP).
We call L c V1 a strong node set, if no pair of nodes {i, j}cL 1s a separable node set.
In other words, more than one node in a strong node set can not be disconnected
from node 1 simultaneously. Then the following fact trivially holds.

Lemma 5 If L cV1is a strong node set, then the inequality

2@ <1 (6)
ieL
is valid for (IP).
To find a strong node set, we construct an auxiliary graph from an instance of the
GDP. The auxiliary graph H = (V1, A) contains each node in V1 and has an edge
between nodes i and j if {i, j} is a separable node set. A stable set of the graph H =
(V1, A) 1s a set of nodes any two of which are nonadjacent. Then, a strong node set
corresponds to a stable set of the auxiliary graph H=(V1, A).

4.2 Cutting plane algorithm

We obtain an upper bound for the problem by solving an LP relaxation of (IP)
with additional inequalities (6) where integrality conditions (4) and (5) are re-
placed by 0<x(e)<1, for each eeF and 0<y@) <1, for each ie Vi, respectively.
Since we have enormous numbers of inequalities (3) and (6), we adopt a cutting
plane algorithm to solve the LP relaxation of (IP). This algorithm initially solves
an LP that consists of (2), 0<x(e)<1, for each eeE and 0< y() <1, for each ie V1.
If we obtain a fractional solution, we find an inequality either (3) or (6) that cuts
off the LP solution, and add this inequality to the current problem. We continue
this procedure until we find an integer solution or can not identify either (3) or (6)
violated by the current fractional solution. ,

To facilitate the algorithm, we need the so-called separation procedures, -one
for (3) and the other for (6), each of which finds, if any, an inequality viclated by

56 MYUNG AND KIM

the current fractional solution. For the inequalities (3), we use the following well-
known separation procedure. We calculate the length of the shortest path be-
tween node 1 and node i with weights x(e) for all edges ecE; then we check for
violations of the inequalities (3) associated with a node ieVi by comparing the
shortest path length between 1 and ¢ with y(7).

As for the inequalities (6), it doesn't seem to be easy to develop an separation
procedure since if such procedure exists, it would solve the problem of finding a
maximum weight stable set that is NP-hard. So, we develop a separation heuris-
tic that may not completely find a violated inequality but finds many of them in
reasonable time. We initially construct the auxiliary graph H=(V1, A). Our heuris-
tic selects nodes with positive values of variables y(i) as many as possible while
keeping the selected set as a strong node set; i.e., a stable set with respect to
H=(V1, A). After selecting a strong node set, we check whether the inequality (6)
associated with the selected set is violated by (x, ¥). Different sequences of select-
ing nodes may produce different strong node sets. However, we don't try to enu-
merate all the possible stable sets of H. Our strategy for selecting such sets is as
follows: We always start a new search from a node not in any strong set previ-
ously selected and if no such node exists, we stop selecting a strong node set.

5. NUMERICAL EXAMPLE

In this section, we illustrate our algorithm using an example presented in Figure
2(a). The edge costs and the node weights are shown above the corresponding
edges and nodes, respectively. Our budget for destroying edges 1s 20. We first il-
lustrate Algorithm LB1. In the first step, we find the maximum min-cost 1-{i } cut,
5(S) for each teVi. Then, Sz ={2, 3}, Sz ={3}, S« ={4}, S5 ={5}, Ss ={5,6}. Since c(5
(S6))>20, we contract nodes 1 and 6 that results in the graph shown in Figure 2(b).
In the next step, we construct a feasible solution. Initially, S =& and I={2, 3, 4, 5}.
We first select Sz, since it gives the maximum ratio of w(S;\S) to ¢(d (S v Si))-c(5
(S)). Then I = {4}. We select S and obtain a final solution S={2, 3, 4} whose objec-
tive value is 55. '

We now describe the process of obtaining an upper bound by solving an LP
relaxation. We initially solve an LP that consists of (2), 0<x(e)<1, for each ecE

and 0<y(G)<1, for each i eVi and obtain a trivial solution in which x(e) =0, for
each eck and y() =1, for each i e V1. Then the separation procedure for (3) gen-
erates the following inequalities in the form of (3): x(12) > y(2); x(12) + x(23) > y(3);

AN ALGORITHM FOR THE GRAPH DISCONNECTION PROBLEM 57

x(14) = y(4); x(15) = y(5). After adding those inequalities to the current LP, we
solve the new LP and obtain a fractional solution such that x(12) = 1, x(14) = 1,
x(15) = 0.538, x(23) = 0, x(25) = 0, x(34) = 0; ¥(2) = y(3) = y(4) = 1, y(5) = 0.538. We
repeat the separation procedure for (3) until we find no inequality (3) viclated by
the obtained fractional solution. Then we perform the separation procedure for (6).
In this example, we generate two such inequalities, y(2) + y(5) <1 and y(3) + y(5) < 1
The LP with those inequalities finally provides an integer solution that is optimal.

@) (b)

Figure 2. (a) Original network (b) Network after preprocessing

6. COMPUTATIONAL RESULTS

The proposed algorithm for calculating lower and upper bounds of the problem
was coded in the language C and test runs were performed on a PC with 150MHz
Pentium CPU. We used CPLEX callable library to solve an LP relaxation. We per-
formed computational experiments using the randomly generated problems. To
generated the test problems, we first drew a 100x100 rectangle on which node
sites were randomly located. '

The computational results on the randomly generated problems are summa-
rized in Tables 1-3. Tables 1-3 show the results for 1080 randomly generated test
problems, which were divided into 108 groups of 10 instances. Each group is clas-
sified by the size of the underlying graph and the level of budget measured by the
ratio of the budget to the sum of edge costs. Each table shows the size of reduced
networks to analyze the effect of preprocessing. The effect of preprocessing is

58 MYUNG AND KIM
Table 1. Computational results for the probiems with 30 nodes
Original Preiiiizss_ Lower Upper Number Time
Network ing Bounds Bounds of cuts GAP (second)

IVI |IE| ble(E)| |V| |E| | LB1LB2LB3 [UB1 UB2 3) (6 PRE LB UB
30 100 040 | 32 26 | 35 34 35| 42 3.8 2.50 0.60 | 0.021 | 0.04 0.00 0.12
30 100 0.45 | 43 4.1 | 5.0 51 52| 57 52 410 0.80 | 0.000 | 0.04 0.00 0.07
30 100 0.50 | 53 54 | 59 61 62| 7.1 6.4 5.50 0.90 | 0.031 | 0.03 0.01 0.08
30 100 055 | 59 6.3 | 65 61 67| 7.8 6.9 6.80 0.90 | 0.016 | 0.05 0.00 0.06
30 100 060 | 7.0 82 | 69 59 71| 83 74 8.90 0.80 | 0.019 | 0.04 0.01 0.06
30 100 0.65 | 83 11.8 | 7.9 7.2 84| 90 89 | 11.30 020 | 0.029 | 0.05 0.00 0.06
30 100 0.70 | 95 147 | 7.9 7.0 84| 98 9.2 | 1500 0.80 | 0.061 | 0.04 0.00 0.08
30 100 0.75 |11.3 21.9 | 81 7.3 86(10.7 9.9 | 31.40 090 | 0.114 | 0.03 0.01 0.11
30 100 0.80 | 12.2 262 | 9.4 80 91[12.0 10.8 [43.70 0.90 | 0.112 | 0.04 0.000.13
30 100 0.85 | 14.7 36.0 [18.9 17.1 18.7{21.1 19.8 | 54.30 1.40 | 0.074 | 0.05 0.00 0.15
30 100 0.90 | 16.0 41.9 |19.1 17.1 18.6|22.3 20.6 | 81.80 1.60 | 0.115 | 0.03 0.01 0.20
30 100 0.95 | 16.7 44.7 |19.2 17.3 18.3(23.3 21.3 | 99.00 1.60 | 0.158 | 0.05 0.00 0.25
30 200040 |" 11 01 | 05 05 05| 05 0.5 0.10 0.00 | 0.000 | 0.09 0.00 0.06
30 200045 | 1.3 03 | 1.2 1.2 12| 12 12 0.30 0.00 | 0.000 | 0.11 0.00 0.05
30 200050 | 14 04 | 1.4 14 14| 14 1.4 0.40 0.00 | 0.000 | 0.06 0.00 0.05
30 200055 | 16 06 { 1.5 1.5 15| 1.6 1.5 0.60 0.10 | 0.000 | 0.09 0.00 0.06
30 200060 | 23 16 | 24 24 24| 24 24 1.70 0.20 | 0.000 | 0.06 0.00 0.06
30 200065 31 2.8 | 33 34 34| 3.7 34 2.90 0.40 | 0.000 | 0.08 0.01 0.07
30 200 0.70 | 36 36 | 41 4.2 42| 47 42 3.60 0.50 | 0.000 | 0.07 0.00 0.06
30 200 0.75 | 45 4.9 | 45 4.7 4.7| 53 4.7 4,70 0.70 | 0.000 | 0.09 0.00 0.05
30 200080 | 56 84 | 48 50 50| 59 5.0 8.90 0.80 | 0.000 | 0.08 0.00 0.07
30 200085 | 66 12.0 | 48 51 51| 65 51 | 1410 090 | 0.000 | 0.07 0.00 0.07
30 200 0.90 | 80 17.2 | 50 52 52| 68 52| 2520 1.00 | 0.000 | 0.08 0.00 0.08
30 200 0.95 |10.0 29.2 | 51 54 54| 7.8 54 | 41.20 1.00 | 0.000 | 0.09 0.00 0.12
30 300040 1.0 00 | 0.0 0.0 0.0 00 00 0.00 0.00 | 0.000 | 0.14 0.00 0.06
30 300045 | 1.0 00 | 0.0 00 0.0] 00 0.0 0.00 0.00 | 0.000 | 0.13 0.00 0.05
30 300050 | 1.2 02 | 0.3 03 03] 03 0.3 0.20 0.10 | 0.000 | 0.13 0.00 0.06
30 300055 | 18 0.9 | 15 1.5 15| 15 1.5 0.90 0.20 | 0.000 | 0.12 0.00 0.06
30 300060 | 23 1.8 | 1.7 1.8 18| 1.9 1.8 1.70 0.30 | 0.000 | 0.12 0.00 0.06
30 300 065 | 34 49 | 29 29 29| 32 29 4.40 0.40 | 0.000 | 0.12 0.00 0.06
30 300 0.70 | 49 95 | 40 40 40| 44 40 8.80 0.50 | 0.000 | 0.12 0.01 0.07
30 300 0.75 | 6.4 16.3 | 4.7 4.7 47| 53 4.7 | 1320 0.70 | 0.000 | 0.12 0.00 0.08
30 300 0.80 | 89 325 | 53 55 55| 64 5.5 | 41.10 0.80 | 0.000 | 0.12 0.00 0.12
30 300 0.85 | 124 66.9 | 5.3 56 56| 7.6 5.6 10290 090 | 0.000 | 0.12 0.00 0.27
30 300 0.90 {147 881 | 58 61 6.1| 9.4 6.1 {12810 0.90 | 0.000 | 0.12 0.01 0.31
30 300 0.95 [17.1 1180 | 58 6.1 6.1[13.0 6.1 [20850 1.10 | 0.000 | 0.13 0.00 0.85

AN ALGORITHM FOR THE GRAPH DISCONNECTION PROBLEM 59

Table 2. Computational results for the problems with 50 nodes

. After .
Original p ocess Lower Upper Number Time
e -
Network F p'r Bounds Bounds of cuts GAP (second)
ing
IVI IE| b/e(E)] IVI JE]| LB1 LB2 1L.B3 | UB1 UB2 3 ® PRE LB UB

50 200 0.40 53 49| 44 44 46 53 4.9 4.60 0.70 | 0.042 | 0.13 0.00 0.11
50 200 0.45 6.4 65| 47 45 49 59 5.0 6.00 1.20 | 0.026 | 0.16 0.00 0.06
50 200 0.50 76 84| 49 47 52 6.4 5.3 7.70 1.20 | 0.020 | 0.16 0.00 0.07
50 200 0.55 9.0 120 50 44 52 6.8 5.6 | 1290 1.10 | 0.051 | 0.16 0.01 0.06
50 200 0.60 | 109 16.1| 5.7 5.0 59 72 64| 1470 1.00 | 0.066 | 0.17 0.01 0.08
50 200 0.65 | 12.7 21.7| 59 52 6.0 7.7 69| 26.00 080} 0.105 | 0.17 0.00 0.09
50 200 0.70 | 143 275 | 6.7 53 6.5 81 76| 38450 0801 0.101 | 0.16 0.01 0.14
50 200 0.75 | 16.2 345 | 7.7 63 7.7 8.7 84| 51.80 0.80{ 0.089 | 0.16 0.00 0.19
50 200 0.80 { 18.1 412 | 7.8 6.6 7.7 91 87 7940 120 | 0.114 | 0.17 0.01 0.27
50 200 0.85 | 19.8 472} 81 74 179 9.6 9.2 (13590 0.90| 0.123 | 0.15 0.02 0.53
50 200 090 | 226 564 | 84 7.0 81 | 103 9.6 | 18570 0.80 | 0.114 | 0.17 0.02 1.89
50 200 0.95 | 244 632 | 87 6.6 81 |11.8 10.2 (19870 1.00 | 0.160 | 0.16 0.01 3.23

50 350 0.40 1.7 0.7) 10 11 11 1.1 11 0.70 0.10 } 0.000 | 0.27 0.00 0.06
50 350 0.45 22 13| 14 15 1.5 1.7 1.5 1.30 0.50 | 0.000 | 0.28 0.00 0.06
50 350 0.50 27 22| 14 15 15 2.0 15 2.00 0.50 | 0.000 | 0.27 0.00 0.07
50 350 0.55 40 41| 1.8 22 2.2 26 22 4.00 0.50 | 0.000 | 0.27 0.01 0.07
50 350 0.60 49 54| 21 23 23 3.0 2.3 540 0.80 | 0.000 | 0.27 0.00 0.07
50 350 0.65 6.2 83} 23 23 24 3.2 24 7.20 0.90 | 0.000 | 0.27 0.00 0.07
50 350 0.70 79 1291} 2.9 2.7 3.0 3.7 31| 13.10 0.90 | 0.001 | 0.27 0.00 0.07
50 350 0.75 | 10.1 21.2) 3.1 2.8 32 42 32| 2140 1.00| 0.002 | 0.29 0.00 0.09
50 350 0.80 | 12.7 36.4| 34 32 36 44 3.7 | 59.30 1.30| 0.011 | 0.27 0.01 0.27
50 350 0.85 | 154 50.1| 36 34 3.8 46 40| 7570 1.20| 0.016 | 0.25 0.01 0.37
50 350 0.90 | 17.7 65.8| 4.5 3.9 4.5 5.3 4.8 |118.20 1.00 | 0.042 | 0.27 0.00 0.75
50 350 0.95 | 20.2 79.9| 4.6 4.1 4.7 59 5.2 120930 120 | 0.066 | 0.27 0.01 4.19

50 500 0.40 14 04| 09 09 09 0.9 09 0.40 0.10 | 0.000 | 0.41 0.00 0.09
50 500 0.45 1.8 097 09 09 09 1.0 0.9 0.90 0.10 | 0.000 | 0.43 0.00 0.06
50 500 0.50 23 22{ 11 11 11 1.2 11 2.40 0.20 | 0.000 | 0.43 0.00 0.07
50 500 0.55 30 39¢{ 11 11 11 1.3 1.1 3.80 0.40 | 0.000 | 0.43 0.00 0.07
50 500 0.60 34 55| 14 14 14 1.7 14 4.80 0.40 | 0.000 | 0.42 0.00 0.08
50 500 0.65 48 98| 19 19 19 2.3 19| 1040 0.40 | 0.000 | 0.42 0.00 0.09
50 500 0.70 71 215| 22 23 23 2.8 2.3 | 47.80 0.70 | 0.000 | 0.44 0.00 0.22
50 500 0.75 9.8 372 | 32 3.0 33 3.8 33| 86.10 0.90| 0.000 | 0.43 0.01 0.52
50 500 0.80 | 12.7 554 | 3.3 33 3.5 4.3 3.6 |113.00 0.90 | 0.020 | 0.42 0.01 1.51
50 500 0.85 | 157 75.6| 3.6 3.5 3.7 5.1 3.9 1163.50 1.00} 0.036 | 0.42 0.02 4.14
50 500 0.90 | 189 1079 | 3.5 3.6 3.8 7.7 4.2 |230.00 120 | 0.066 | 0.42 0.02 7.27
50 500 0.95 | 221 1299 | 41 39 42 | 139 54 |25520 1.30| 0.176 | 0.42 0.03 1.84

60 MYUNG AND KIM
Table 3. Computational results for the problems with 80 nodes
Original Pre?)iecl;}ss- Lower Upper Number GAP Time
Network ing Bounds Bounds of cuts (second)
IVI |El b/e(E)| IVI IEl | LB1 LB2 LB3 | UB1 UB2 3) (6) PRE LB UB
80 300 0.40 75 79| 2.8 24 2.8 3.2 28 7.00 1.10(0.018 {0.50 0.00 0.06
80 300 0.45 9.9 114| 3.0 2.7 29 3.5 3.2 10.20 0.70| 0.067 |0.50 0.00 0.06
80 300 0.50 | 13.3 174| 3.2 2.3 3.2 3.9 3.6 15.70 0.70| 0.099 |0.50 0.01 0.08
80 300 0.55 | 14.8 19.6| 35 3.0 36 | 4.1 3.9 18.40 0.90| 0.082 |0.50 0.00 0.10
80 300 0.60 | 17.7 2b5.5| 3.9 3.2 3.7 4.6 4.3 25,50 0.60| 0.103 |0.45 0.01 0.11
80 300 0.65 | 20.6 32.3| 43 3.8 3.8 4.8 4.6 30.00 0.60| 0.069 (0.50 0.01 0.14
80 300 0.70 | 23.2 40.5| 4.3 4.2 4.2 51 4.9 42,60 0.90(0.072]0.50 0.01 0.19
80 300 0.75 | 25.6 46.8| 4.8 4.3 4.5 54 5.3 48.90 0.50| 0.077 |0.51 0.01 0.23
80 300 0.80 | 28.5 56.1| 5.0 4.3 4.7 5.7 5.6 73.70 0.80(0.104 |0.50 0.02 0.32
80 300 0.85 | 32.2 68.6| 52 4.4 49 6.0 5.9 99.80 0.50| 0.117 |0.50 0.03 0.50
80 300 0.90 | 354 80.5| 54 48 5.2 6.3 6.3 | 128.30 0.20| 0.138 |[0.50 0.03 0.75
80 300 0.95 | 41.0 109.3| 14.814.0 14.6 |{15.8 15.8 | 210.30 0.40| 0.160 |0.51 0.06 1.32
80 500 0.40 3.0 23| 19 19 19| 20 19 2.30 0.60| 0.000]0.83 0.01 0.07
80 500 0.45 48 45| 20 20 20| 24 20 4,40 1.00{ 0.000 [0.86 0.00 0.06
80 500 0.50 6.6 74| 20 2,0 2.1 2.7 2.1 7.90 1.00(0.024 |0.84 0.00 0.08
80 500 0.55 83 104| 21 22 22 29 2.3 10.10 1.20| 0.031 }{0.85 0.00 0.07
80 500 0.60 | 11,5 170} 22 24 24 | 32 25 16.40 1.30) 0.044 10.85 0.00 0.08
80 500 0.65 | 144 257| 24 25 25 3.5 2.7 27.40 1.30| 0.013 |0.84 0.00 0.12
80 500 0.70 | 18,5 36.8] 2.8 2.9 3.0 3.7 3.0 38.10 1.30| 0.009 |(0.83 0.01 0.16
80 500 0.75 | 23.6 56.0| 3.0 2.7 3.0 | 40 3.3 55.00 1.50| 0.066 |0.84 0.01 0.29
80 500 0.80 | 27.7 72.9| 34 2.8 33 | 42 3.8 95.00 1.50| 0.093 |0.85 0.01 0.45
80 500 0.85 | 32.0 91.1| 35 2.8 34 | 44 41 | 13620 1.10| 0.115 |0.85 0.02 0.68
80 500 0.90 | 36.3 115.1| 4.0 3.0 4.1 46 4.4 | 19290 0.90| 0.068 |0.75 0.03 1.19
80 500 0.95 | 42.2 155.0| 4.1 3.0 4.2 4.9 4.7 | 48780 1.20| 0.090 |0.83 0.04 7.61
80 700 0.40 24 16| 07 0.7 07 0.9 0.7 1.60 0.30] 0.000 |1.20 0.00 0.09
80 700 0.45 3.8 38| 14 14 14 15 14 3.40 0.50| 0.000 |1.20 0.00 0.08
80 700 0.50 52 7.7 15 1.5 1.5 1.7 1.5 5.60 0.50| 0.003 [1.20 0.01 0.06
80 700 0.55 7.1 13.5) 1.7 1.7 1.7 20 1.8 9.90 0.50 0.020 |[1.22 0.01 0.09
80 700 0.60 | 10.7 27.0(1.8 1.9 1.8 2.3 1.9 | *24.80 0.60; 0.022 |1.21 0.00 0.18
80 700 0.65 | 14.1 42.3| 21 2.2 2.2 2.7 2.3 54.30 0.80| 0.029 |1.21 0.01 0.34
80 700 0.70 | 17.9 64.3| 25 24 2.6 3.1 26 | 260.70 1.20| 0.001 |[1.20 0.02 4.83
80 700 0.75 | 21.9 88.1| 2.6 2.5 2.8 3.4 2.8 | 27840 1.20| 0.005 |1.21 0.02 6.00
80 700 0.80 | 25.5 118.8| 2.7 2.3 2.9 3.8 3.0 | 43790 1.10| 0.020 |1.21 0.04 18.62
80 700 0.85 | 29.3 145.7}1 2.8 24 29 44 3.1 | 550.30 1.30) 0.043 |1.22 0.07 50.80
80 700 0.90 | 35.3 189.2| 2.8 24 29 59 8.5 | 633.80 1.30| 0.150 |1.22 0.09 67.49
80 700 0.95 | 39.4 223.0| 3.2 2.7 3.1 73 43 | 77310 1.60| 0.189 |1.22 0.1071.11

AN ALGORITHM FOR THE GRAPH DISCONNECTION PROBLEM 61

strong especially when the level of budget is low. Lower and upper bounds, de-
noted by LB and UB, respectively, were obtained using the procedures presented
in Section 3 and 4, respectively. UB1 corresponds to the value of the LP relaxa-
tion with the inequalities (3) while UB2 does to that with both the inequalities (3)
and (6). LB1, LB2, and LB3 represent the values of the heuristic solutions gener-
ated by Algorithm LB1, Algorithm LB2, and Algorithm LB3, respectively.

The number of inequalities (3) and (6) added to the initial LP are also re-
ported. GAP represents the ratio of the difference between the best lower bound
and UB2 to the best lower bound. Each figure in all tables represents the average
of the corresponding values for 10 problems. As seen in Tables 1-3, our algorithm
calculated lower and upper bounds with good quality within a reasonable time
even for the large size problems.

REFERENCES

[1] Ahuyja, R. K, T. L. Magnanti and J. B. Orlin, Network Flows, Prentice Hall,
New Jersey, 1993.

[2] Cosares, S., N. D. Deutch, 1. Saniee, and O. J. Wasem, “SONET toolkit: A
decision support system for designing robust and cost-effective fiber-optic
networks,” Interfaces 25 (1995), 20-40.

[3] Cunningham, W. H., “Optimal attack and reinforcement of a network,”
Journal of the ACM 32 (1985), 549-561.

[4] Grotschel, M., C. L. Monma, and M. Stoer, “Design of survivable networks,”
Network Models, M.O. Ball et al. (eds.), North-Holland, Amsterdam, 1995,
617-672.

[6] Gusfield, D., “Computing the strength of a graph,” SIAM Journal on
Computing 20 (1991), 639-654.

[6] Martel, C., G. Nuckolls, and D. Sniegowski, “Computing the disconnectivity
of a graph,” Working paper, UC Davis, 2001.

[77 T. Wu, Fiber network survivability, Artech House, Boston, 1992.

