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ABSTRACT

The results of a study of the coordination effect in stocking and promotional markdown
policies for a supply chain consisting of a retailer and a discount outlet (DCO) are reported
here. We assume that the product is sold in two consecutive periods: the Normal Sales
Period (NSP) and the subsequent Promotional Markdown Sales Period (PSP). We first
study an integrated supply chain in which managers in the two periods design a common
system so as to jointly decide the stocking quantities, markdown time schedule, and mark—
down price to maximize mutual profit. Next, we consider a decentralized supply chain An
uncoordinated contract is designed in which decisions are decentralized to optimize the
individual party’s objective function. Here, three sources of system inefficiencies cause the
decentralized system to earn a lower expected system profit than that in the integrated
supply chain. The three sources are as follows: in the decentralized system the retailer
tends to (1) stock less, and (2) keep a longer sales period, and the DCO tends to (3) stock
fewer leftovers inventories and charge a higher markdown price.Finally, a numerical ex—
periment is provided to compare the coordnated model with the uncoordinated model to
explore factors that make coordination an effective approach.
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1. INTRODUCTION

The importance of coordination in the supply chain has recently been discussed in
a considerable body of literature. The main argument states that while the impor-
tance of achieving integration in the supply chain is generally well recognized, for
real-world applications designing a sophisticated integrated system is an arduous
task. Few firms are so powerful that they can manage the entire provision of the
supply chain so as to drive individual members to a superimposed integrated ob-
jective. Rather, a more realistic approach is to design a coordination contract with
incentive to induce members of a supply chain to cooperate with others under a
voluntary compliance base. This notion has drawn a great body of research focus-
ing on designing supply chain coordinating contracts. Examples are coordination
via buy back contracts (Pasternack [18]), markdown allowances contracts (Tsay
[21]), price only contracts (Lariviere [8]), quantity flexibility contracts (Tsay [22]),
price protection contracts (Taylor [21]), and Quantity Discount contracts (Jeuland
and Shugan [3], Monahan [16], Lee and Rosenblatt {12], Kohli and Park [6, 7],
and Weng [25]).

In this study, along a similar vein, we explore coordination effects in a supply
chain consisting of a retailer and a discount outlet. Consider a supply chain con-
sisting of a retailer and a discount outlet (DCO) selling a “short life cycle good”
(e.g., personal computers, consumer electronics, fashion items) to possible con-
sumers. If the product is not sold after the first Normal Sale Period (NSP), the
supply chain has an opportunity to try a new price in a secondary Promotional
Markdown Sale Period (PSP). When does the supply chain change price and how
does the new price relate to the old? How many of these items should the supply
chain produce in the first place, and how many should the second agent (discount
outlet) stock in the secondary markdown market? Firms face very similar prob-
lems when they market a new product that has a limited product lifetime. Our
study tries to provide answers to these questions. In particular, we study three
issues of great importance in designing a coordinated supply chain consisting of
normal and secondary markdown sale markets, namely markdown sale timing,
markdown pricing and inventory stocking. A related model was studied in Lee
[11], in which a two-periods newsvendor model (consisting of normal and mark-
down sale periods) was formulated to study supply chain coordination issues in
inventory control and price setting. We expand Lee’s model to include the issue of
designing an integrated markdown pricing decision and markdown time schedule
for launching a markdown sell event. The supply chain coordinated pricing deci-
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sion studied in our model differs from the previous related studies in two aspects.
First, our model attempts to explore the relationship between two pricing deci-
sions, namely, normal and markdown prices; thus, the model is different from the
single period models (see, for example, Emmons and Gilbert [2], Marvel and Peck
[15], Kandel [4], and Lau, Lau, and Willett [10]). Second, we try to verify the rela-
tionship between the markdown price decision and markdown time schedule.
These issues have not been discussed in the previous literature, which are aspects
of coordination that are unique to the particular setting.

This paper i1s structured as follows. In section 2, a problem description, as-
sumptions, and notations are presented. In section 3.1, an objective function of
the retailer and the discount outlet is formulated. Then the optimal policies for
the integrated supply chain are developed and analyzed. In section 3.2, we con-
sider a decentralized supply chain. Here, decisions are made for optimizing objec-
tives of the individual systems. The sources of supply chain distortions are veri-
fied, and coordinating strategies are suggested. In section 4, numerical examples
are provided to explore the coordinated contract. A brief discussion in section 5
completes the paper.

2. THE MODELING ISSUES

Our problem is formulated as a two-period Newsboy model with the objective of
maximizing the expected profit. (See Porteus [20] for a review of the Newsboy
problem.) The chronology of events for the model is described as follows:

(1) In the beginning of NSP, the retailer observes the market for a short period
of time labeled an Observation Period (OP) to evaluate market potential. Af-
ter the observation period a signal about market potential is revealed. The
retailer then decides an order size based on a forecasted expected demand
conditional on the market signal. Since the forecasted demand is closely re-
lated to the time schedule, i.e., the lengths of NSP and PSP, to choose an op-
timal order size, the retailer needs to simultaneously estimate a time sched-
ule. A similar approach can be seen in Bartmann and Beckmann [1] (a time-
dependent demand Newsboy problem in which optimal order quantity and
selling period are determined simultaneously). Notice that the estimated
time schedule (the lengths of NSP and PSP) is the retailer’s private informa-
tion, and will only be used by the retailer as an internal aid for the order
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guantity decision-making. It is not a firm commitment to the discount outlet,

and can be changed in the later phase of the selling season. We assume in-

ventory replenishment is allowed only once (at the beginning of the NSP).

When the random demand in any point in time exceeds availability, selling

opportunities are lost.

(2) At the end of NSP, if stocks are not completely depleted, the retailer initiates
the second period (PSP) by offering a leftovers wholesale price, for which the
retailer will sell the leftovers to the DCO.

(8) In PSP, the DCO determines a markdown sales quantity (< leftovers quan-

tity) and a unit markdown sale price (< normal sale price) for which the DCO

will sell the leftovers to the possible consumers.

Table 1 lists notations used in the paper.

Table 1. Notations

000w

I~

q
Dy(a)

DP(aJ}/)

Y=Y|Z X=XIK (Z) probabilistic scaling factor after information update (after OP)
f(y) and g(x)

F(y) and G(x)
1(@,a) = max [Q - yDN(a),0] the retailer’s leftovers at the end of the NSP

¢n(Q,2) =@/ Dy(a) and &p(q,2.7):=q/Dpla,y)

the NSP retail price
the retailer’s order quantity

the retailer’s unit order cost
the wholesale price of leftovers at the end of the NSP

the length of the retailer’s normal sales period (& =1-a)
the DCO’s markdown price ratio (7 =1y ).For example, if a product with an

initial list price of P =$10 is later priced at 35% off the original face value,
then Py =10(0.65)=$6.50.

the DCO’s markdown sales quantity
the expected random demand of the retailer in the NSP

the expected random demand of the DCO in the PSP

the probability densities of Y , X

the cumulative distribution functions (F (y) and 5(x) converse CDF)

The following assumptions and notations are used for modeling purposes:
Demands are probabilistic, depending on the lapse in the sales period and/or

markdown price, and assumed to be comprised of two components. The first com-

ponent, representing the expected demand or the location parameter of the ran-
dom demand, is influenced by the lapse in the sales period and/or the markdown
price. The second component, representing the probabilistic scaling parameter of
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the random demand, is independent of the lapse in the sales period and mark-
down price. This two-component approach was used in various literatures to for-
mulate price-dependent random demands due to its simplicity and flexibility.
Leland [13], for example, has considered two price-dependent random demand
models-multiplicative and additive. The multiplicative model formulates random
demand d = h(P)A as the product of an expected demand h(P) (as a function of

price P) and a probabilistic scaling component 2 with E(1) =1 (see also Emmons
and Gilbert [2]: linear expected demand d = Ab(a—P) and Petruzzi and Dada
[19]: iso-elastic expected demand d=AbP™“. Here, @ and b are non-negative,
and arbitrarily decided demand parameters). The additive model assumes ran-
dom demand d=h(P)+ A with E(1)=0 (see also Lau and Lau [9]: (model B)
hyperbolic expected demand d = a(bP?+P) '+ and (model A) linear expected
demand d=a-bP+1). In this work, we will focus on studying the problem as-

suming that demand is multiplicative; however, we will also briefly discuss the
results for the additive demand model in Section 3.1.

Define r as the exogenously determined total life cycle. The lengths of NSP
(PSP) are formulated as a fraction 0<a<l of 7, ie., ar (l1-a)r). Let

Dp(a,y) (Dy(a)) denote expected demand during the PSP (NSP). We assume a

linear expected demand function, and two square root expected demand functions.

(1) Linear expected demand function assume Dy(a)=kya and Dp(a,y)=
kp(1—7)1—-0a) (Hereafter, we will denote linear model as Model C), where
ky and kp are positive constants of the expected demand functions.

(ii) Square root demand functions are respectively two factors (a,y) multiplica-
tive model Dp(a,y) = \Jkp(1 - )1 — ) (Model A) and two factors additive model
Dp(a,y) = \/kpl(l —a)—kpyy with 0<y< min[kp1 a- a)/kp2,1] (Model B)

where kp; and kp, are positive constants of the expected demand function..

We assume Dy (a)=/kya for both models.

Let (?,)Nf ) be the probabilistic scaling parameters of NSP and PSP without
the prior knowledge of market signal. We assume that (17,)? ) can be expressed as
a sum of two random components I7=Z+gy and X=K +¢&, with ,(g,) and

Z(K) being independent, and E(Y)=1 and E(X)=1. Here, Z, denoting “the

signal about market potential”, can be observed after observation period (OP). This
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approach 1s similar to the random demand model formulated in Tsay [22]. However
in his model the demand is not a function of the elapse of time. We assume that X
and Y are correlated. For example, if K(Z)=a+bZ then Cov(l?,f() =bVar(Z),
and the random component of demand in the NSP (17) is positively (nega-
tively) correlated with that of the PSP (X)if b>0(b<0). Define Y=Y |Z
and X = X | K(Z) as random variables given that the market signal Z has been

observed. For example, if both ¢, and ¢, are normally distributed with vari-

ances oy” and oy?, then Y and X are normally distributed. Assuming now

ox =0y =0, then the demand variance in the NSP and PSP can be expressed as

(i) Two factors multiplicative square root demand model (Model A): o-l({,a and
o-%(l—a), where 0'12\, =kNa2 is a constant, and 0';93 =kP0'2(1——y) is a de-
creasing function of y. We see that the variance in PSP, particularly 0-12),

increases as the expected demand increases (due to price (y) decrease). A

justification for this result can be seen in Lau and Lau [9]. They state that for
a high demand level (due to low price) beyond the normal operating range,
the random demand may.have a large variance due to a lack of past experi-
ence to draw on.

(i) Two factors additive "square root demand model (Model B): o-zzva and
o3(l1-a)-6% , where ox =kyo® and 0% =kpo” are constants, and

&2 = kpyo®y is an increasing function of y.

It 1s seen that in the square root demand functions when oy =op, the total

variance is not affected by where the period is divided, and the variance is allo-
cated between the two parts of the period in proportion to their length.

(111) Linear demand model (Model C): 0']2\,0:2 and 0'1% (1-a)?, where 0-12\, = (kNO')2
is a constant, and op = [kpo(l- 9] ® is a decreasing function of y. We see
that in the linear demand model total variance is closely related to the mark-
down sale time schedule. In particular, the total variance is proportional to
the value a? + a —a)? which is strictly convex between [0,1]; thus, the vari-

ance can be reduced to the minimum when the two periods are divided
equally.



MODELING COORDINATED CONTRACTS FOR A SUPPLY CHAIN CONSISTING 7

3. RETAILER-DCO DECISION-MAKING SYSTEMS

In section 3.1, to provide an efficient benchmark, we consider an integrated sys-
tem in which the retailer and the DCO form a common system, share demand in-
formation, and jointly design an integrated ordering, time schedule, and mark-
down policy so as to deliver the greatest possible expected system profits. In sec-
tion 3.2, a decentralized supply chain is considered. We will focus on verifying
possible sources of inefficiencies that cause sub-optimality in the decentralized
system.

3.1 Centralized Supply Chain Model

In the centralized system, the supply chain will maximize the joint objective func-
tion of the retailer and the DCO. Since the market signal Z is assumed to be
known to both parties, decisions regarding @(«a) and o are made based on the

forecast about (Y,X).Let Qp(Qp) denote the retailer’s (DCO’s) expected profit
excluding the wholesale revenue (cost) of leftovers. Denote &y (@,a) =@/ Dy(a)
and ¢p(q,a,7) =q/Dp(a,y) asin Table 1:

Retailer : Qy(@,a) = P{ [ 3Dy(a) dF + |7 QdF } _cQ

DCO: Qp(g.r11(Q,a),a):= Py{_[ép xDp(a,y) dG+I; gdG }

0

The expected joint profit for the centralized model, which we denote as H%P is:

maxg , 13(Q,) = Oy (Q.0) + E, | max, o, Qp(a,7 1 Q) )| . (1)

The objective function in (1) reveals that the goal of the integrated supply

¢, qC , 7C ). Solving

chain i1s to choose the centralized optimal policy (QC ,
0Qp/0g =0 leads to q¢ =I. Clearly, making ¢ =1 can maximize the supply
of leftovers available for sale in the PSP. The only impact of making ¢© < I is to
reduce the supply of goods available for sale in the PSP, tightening a constraint

cannot produce a better solution. Substituting ¢© = I into the objective function

in (1), and solving 8Qp q¢ =1, )/ oy =0 give the optimal markdown price ratio



8 LEE

7C(qc =1I) , satisfying the following expression. Note that since qc =1,
§P = I(an)/DP(y7a) .

dDp(y,0) _ 1@ a)G(ép)
dy .[5” xdG

Dp(y,a)+y (2)

The right-hand side in (2) is negative, and the absolute value decreases in y

and approaches 0 when y approaches 1. Since dz(yDP)/ dy?® <0, the left-hand
side changes its sign from positive to negative and continuously decreases there-
after. The two properties give a unique optimal markdown price ratio 70 that is
greater than the risk-less price ratio satisfying Dp +ydDp/dy =0. Petruzzi and

Dada [19] state that the optimal price depends on the nature of the uncertainty:
additive uncertainty leads to an optimal price that is less than the risk-less price,
and multiplicative uncertainty leads to an optimal price that is more than the
risk-less price. This property also applies to our study. At the end of this section,
we will show that the markdown price of the additive demand model is smaller
than that in the deterministic case. The necessary conditions for (@,a) that

maximize (1) satisfy
C = C v =
aHNP/6Q=0:>F(§N)—F+ jo yG(&p)dF =0, and (3)

O %p /0 =0= 6Qy /da +0E,{Qp}/ 6a =0, where

Qy _dDy e
Py ZWJ’O ydF >0 , and
oE {QP} oD Evt & dD £ =
J — P N P _ N A
da  oa .[0 Io yxdGdF dat Io yG(&p)ydF <0 (4)

We see that increasing « by one unit will increase the retailer’s objective
function by 6Qy /0a but will reduce the DCO’s profit by —0E {Qp}/da . Clearly,

the supply chain has a tradeoff problem at hand. Let Q(1):=0Qp/06 =0 and
2)=0Qy/0Q =0 . The optimal order quantity derived from (3) show that

Q" (a)/ 6a loy<0 and Q" (o) da lo2y> 0. This tells us that optimization from

the view of the DCO requires the retailer to reduce order quantity so as to gener-
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ate fewer leftovers when the normal sales period is extended (6Q/da lo@y< 0).

However, the optimization from the retailer’s viewpoint reveals a totally different
result (0Q/0a |9 > 0). Therefore, a conflict of interest exists between the retailer

and the DCO. Proposition 1 shows the properties of the optimal solution.

Proposition 1. (Proof. See Appendix 1.)

1.1 For models A, B, and C the objective function H%P is jointly concave with
respect to (Q,y,a) if g(x) has increasing or constant failure rates.

1.2 Comparative statics: Let TI(1) = dllyp/0a =0 and Q(3) =0Qp/3y =0. The
optimum y~ and o satisfy (2) and (4) show (@) 0y (I,a)/dl lqE<0 , (b)
oy (L)l 0a | q@3< 0, and (c) 0a(Q)/0Q Iu<0. 0

Proposition 1.1 reveals that the objective function is concave if the density
functions have an increasing or constant failure rate. While the proposition limits
the distribution, increasing or constant failure rate class is broad enough to in-
clude most of the distribution one would choose to employ. For example, the nor-
mal and the exponential are both relatively widely used increasing or constant
failure rate densities that are quite probable for formulating random demands
(see, for example, Parlar and Weng [17] and Li, Lau, and Lau [14].) Proposition
1.2 shows that the system gives a greater discount as leftovers increase or the
markdown period decreases. Proposition 1.2 also reveals that the supply chain
reduces the length of NSP so that the leftovers can be moved to DCO in a more
timely fashion as leftovers increase (I increases as @ increases).

Now, let us briefly discuss the result obtained from an additive random de-
mand model. Recall that the necessary condition in (2) is obtained from solving for

the optimal value of qC =] for a given y first, and then substituting the result
back into the objective function, and solving for the optimal y . This approach was

employed in Whitin [26]. Here, we will use a different approach in which we solve
for the optimal y for a given g first, and then solve for the optimal g (see Zabel

[27]). The random demand in the additive model is formulated as y + Dy(a) with
E(Y)=0(we assume Y e[B,A] is well defined so that y+Dy(a) does not be-
come negative). Similarly, we assume random demand to be x+ Dp(a,),

X e[D,C] with E(X)=0. Define &y =@-Dy(@), and &p :=g—-Dp(a,y). The

DCO’s expected profit is Qp = P}/{If; (Dp +x) dG + I; (&p + DP)dG} . Solving
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8Qp /0y =0 reveals y©, satisfying D, + }/DP’ = J.;: (x—-£p)dG. The right-hand

side is positive; thus, ;/C 1s smaller than the risk-less price ratio satisfying

Dp+yDp =0 (notice that, in the multiplicative model, y€ is gr‘eater than the
risk-less price ratio). Substituting the optimal price reveals 0Qp/dq = y(_}(cfp) >0,
and this leads to ¢ — 0= ¢ =I. The optimal solution for the order quantity

QC is identical with that in (3). Solving oI /da =0 results in a*, satisfying

DN'jé"dF+Jé»v7{DP’ gpdG—DN'j;dG} dF = 0.

3.2 The Contract Models for the Decentralized Supply Chain

In this section we model a decentralized system as a Stackelberg Game in which
the DCO, acting as a follower, chooses a markdown sale quantity ¢ < I, pays C,

for each leftover item, and designs a markdown price y. The retailer, on the
other hand, acting as a channel leader, designs(€,a,C,) to maximize his’her in-

dividual objective function. In addition to the notations given in Table 1, Table 2
lists additional notations used in the paper.

Table 2. Notations

Z(x), G(x) probability density and cumulative distribution of X

o . denotes probability densities g or g

r denotes cumulative distribution functions G or G
z denotes variables x or x

PO =9)/TO)

£.(Q.q,a) =(Q —q)/ Dy (see equation (6) for the definition of q )

Ep1 = EDP(}/l)a) ,and §p2 = I/Dp(}’zya)

As in Section 3.1. let Q%C (Qgc) denote the retailer’s (DCO’s) expected profit
excluding the wholesale revenue (cost) of leftovers in the decentralized supply

chain. Also denote H%C(Q,a lg,y))x = Q%C(Q,a) +Ey {maxcr C.xq} as the re-

tailer’s expected profit (including the expected wholesale revenue of leftovers).

The retailer’s problem is maxg , H%C(Q,a lq,7), and the DCO’s optimization
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problem is max, , {QY¢(r,q|I,a)-C. xq}. Two scenarios regarding information
q,y p 7 r

sharing are assumed. (1) Scenario 1: The retailer does not share the market sig-
nal Z with the DCO, and the DCO has no way to know market signal Z; thus,
the DCO’s decisions are made based on g(%),X , and (2) Scenario 2: the retailer
truthfully shares the market signal Z with the DCO, or the DCO has a way to
obtain information regarding Z ; hence, the DCQO’s decisions are made based on
g(x),X . The retailer’s optimal wholesale price satisfies:

. _  0q o
C,, satisfies q+ C.=0 if q(C,)<1I
cve =4 oC, v (5)

Gy = P?’l:(éfm) if q(Cy)>1

The (g,y) maximizing the DCO’s objective function are given by the following

expression:

vo _[@(Ca) if @Ca)=Dp(a) ' A-Cul PRYST
I if 3(Cy)>1 ’

vc dDp _ —chl:(pr )

v =y, A=1, 2satisfies Dp(y,a)+y — (6)

Upon substituting C,, = Py,T'(épy) , the optimal order quantity QUC satisfies:

F(&)=CIP+ [ [ 1l (2 )0~ pepa)ps) dF =0, ™
and a'C satisfies:
I [ o e S ST~ ) Jdr
8 o T 2 dF ®

Proposition 2. (See Appendix 2 for the Proof of Proposition 2.)
2.1 For both models A and B, H%C(Q,a,CrUC(Q,a)) is concave in (Q,a) if ¢(x)

has an IFR. ch(q,}/) is concave in (q,7).
2.2 Comparative statics: Let TI(1) := 6H%C [0a=0 and QQ):= GQVC /1oy =0.
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(@) 9y/0l lnq<0,

(b) 0y/0alyyy<0, and (c) daloQ Ipgy<0.

2.3 System Inefficiency (Double Marginalization): Under scenario 2 (¢(x) = g(x)),
if g(x) has an increasing failure rate (IFR)

(@) Given (a®,¢%) =(a",¢""), Q" <Q°.

(b) Given (Q°,4°) =(Q",q"), " 2a”.

(c) Given (a®,Q%)= @¢,Q"%), ¢“=124"" = ;/UC >4C. 0
Proposition 2.3 reveals three sources of system distortions (Double Marginaliza-
tion). In general, these distortions stem from making decisions based on “local

costs or revenues” rather than on “system costs or revenues”.
Factor 1: The DCO’s local sale margin is less than the full system margin

(Py—C, = Py); thus, it drives the retailer to order less and price higher than the
centralized policy (¢€ =1 2qYC = yY¢ »,°).

Factor 2: System’s expected salvage revenues J'j“' Py, dF (salvage revenue in

DCO) versus the retailer’s local salve{ge revenue _[ j‘" C.q dF (whole sale revenue

of leftovers). This leads to the following two system distortions. (i) The retailer
orders less than the centralized order quantity QUC < QC. (11) The time schedule

in the decentralized system is made based on analyzing the trade-offs regarding

the retailer’s normal sale revenue and wholesale revenue of leftovers ( J j“' C.qdF)

and thus, the result is confined to optimizing the retailer’s individual benefit.
Whereas in the centralized system, the trade-off analysis focuses on optimizing

system-wide profits. It considers the retailer’s normal sale revenue, and the true

system salvage revenue from the DCO ('[(';:‘V PyQp dF ). Proposition 2.3 (b) reveals

that in the decentralized system the retailer tends to keep a longer sales period.
This result has not been discussed in the previous literature, which is an aspect of
coordination that is unique to the particular setting. In the following Section 3.3
we will furnish a numerical experiment to provide a more detailed study of the
systems distortions and their effects on the supply chain.

3.3 Analysis of Retailer-DCO Coordination: A Numerical Experiment

This section presents a numerical example designed to explore and compare cen-
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tralized and decentralized decision-making processes. The following assumptions
are used in the numerical computation: (a) &y and ¢y are exponentially dis-

tributed with means E(sy)=E(¢x)=0.5. a=0,0=1(K=2), and K and Z
are exponentially distributed with £(K) = E(Z)=0.5. (b) Base parameters will
take the following values: P=50, C=30, 2=0.4, ky =700, and k&, =1500.

(c) We assume Scenario 1; thus, the retailer does not share the market signal Z
with the DCO. (d) Expected demand in PSP is assumed to be a two factors multi-

plicative model Dp(a,y) =.kp(1-a)(1-y). Four parameters are varied to see

the effect of coordination. z changes from 0.2 to 0.75; kp changes from 650 to

1100; C changes from 0.1 to 45; and P changes from 50 to 95. Figures 1-1 to 4-1
show difference in supply chain expected profits between the centralized model
and the decentralized model. Figures 1-2 to 4-2 show order quantities of the cen-
tralized model and the decentralized model. Figures 1-3 to 4-3 show normal and
markdown schedules of the centralized model and the decentralized model. Fig-
ures 1-4 to 4-4 show markdown prices of the centralized model and the decentral-
ized model.

Figures 1-1 to 4-1 indicate that the coordination approach outperforms the
uncoordinated approach on every occasion, but the benefits are most significant
when the market signal Z and price P are relatively high, or the production
cost C is relatively small. For example, Figure 3-1 reveals that the supply chain
profit generated from the centralized model is almost $6,000 more than that gen-
erated from the decentralized model when C =0.1. Thus, both parties can design
a fair arrangement for sharing the additional benefits generated from adopting
the coordinated policies. We also see from Figure 2-1 that the coordination model
generates higher profits when normal sale demand rate ky is relatively high or

relatively low (demands are either extremely sensitive or extremely insensitive to
the length of NSP).

Figure 1-2 illustrates optimal stocking policies for the centralized model and
the decentralized model as a function of (Z). It shows that as a result of market

signaling a high demand (Z), the retailer increases the stock quantity QUC, and

uc

unilaterally increases « 80 as to generate more normal sales. Whereas, Fig-

ures 1-2 and 1-3 show that U is closely related to the length of the markdown

uc

period 1-aY¢; thus, g¥¢ shows a decreasing trend (due to the « increase).

As a result, the supply chain shows a clear evidence of disconnected decision-
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making pattern in which leftovers (I increases as QUC increases) and mark-

down quantity reveals completely different behaviors, and generates a large
quantity of wasted leftovers. We see that this phenomenon recurs in Figures 2
through 4. For example, Figure 2-2 illustrates optimal stocking policies as a func-
tion of &y . Due to a high demand (&y ), the retailer increases the stock quantity

uc

QYC, and increases «a so as to generate more normal sales. Whereas, Figures

1-2 and 1-3 show that gYC is closely related to the length of the markdown pe-

uc

riod 1-a"C; thus, q_UC shows a decreasing trend (due to the o~ increase). On

the other hand, in the centralized model, Figure 1.3 shows that markdown period
1-a® increases as leftovers quantity increases (due to QC increases). Here, the

retailer-DCO alliance knows that both parties’ markets signal high demands; there-

¢ increases to absorb excessive leftovers. We can also

fore, markdown period 1-«
observe a similar pattern from Figure 2.4. Here, the retailer-DCO alliance knows

that the retailer will face a high market demand; therefore, the markdown price
7 decreases as leftovers quantity increases (due to @ increases).

Figures 1-2 through 4-2 reveal that, in general, the centralized model orders
a larger quantity as described in Proposition 2.3 (a). We also see from Figures 1-3
through 4-3 that in the centralized model, the retailer tends to maintain a shorter
sales period compared to those in the decentralized model so that the leftovers
can be moved to the DCO in a more timely fashion in order to take advantage of a
more time-elastic market. This unselfish spirit undoubtedly generates a higher
profit for the coordination model.

Similar patterns can also be seen from Figures 1-4 through 4-4. They show
that, in the centralized model, the retailer tends to maintain a lower markdown
priced compared to those in the decentralized model so as to increase the mark-
down demand. Figures 1-4 through 4-4 reveal that in the centralized model, in-
asmuch as all of the leftovers are moved to the DCO for a markdown sale, the
markdown price is designed as a decreasing function of order quantity Q° . Thus,
markdown price decreases (increases) as leftovers quantity increases (decreases).

¢ also

In addition, as a supporting mechanism the markdown sale period 1-«
increases (decreases) as QC increases (decreases) so that the leftovers can be
moved to the DCO in a more timely fashion. Except in Figure 2, here both at
and QC increases as normal demand rate ky increases (normal demand is more

sensitive to the length of NSP).
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4. DISCUSSION AND CONCLUSION

In this paper, we analyzed a model to study the effects of retailer-DCO coordina-
tion in supply chain stocking and promotional markdown operations. Our purpose
was to develop an understanding of how, when, and why coordination helps to
improve expected profits.

We first developed an integrated system as a benchmark case in which the
retailer-DCO alliance jointly decides the stocking quantity, a plan for markdown
time schedule, and markdown price to maximize mutual profit. Next, we consid-
ered a decentralized system in which the DCO, acting as a follower, individually
optimizes his/her objective function by choosing a markdown sale quantity and a
markdown price. The retailer, on the other hand, acting as a channel leader, de-
signs order quantity, markdown time schedule, and wholesale price of leftovers to
maximize his/her individual objective function. Three sources of system ineffi-
ciencies cause the decentralized system to generate a lower expected profit than
that for the integrated system. These are as follows: in the decentralized system
the retailer tends to (1) stock less, and (2) keep a longer sales period, and the
DCO tends to (3) stock lesser inventories and charge a higher markdown price.

A numerical experiment 1s provided to compare centralized model and decen-
tralized model. Our study indicates that the coordination approach outperforms
the uncoordinated approach on every occasion, but the benefits are most signifi-
cant when the market signal Z and price P are relatively high, or the produc-
tion cost C is relatively small. We also see that the coordination model gener-
ates higher profits when normal sale demand rates ky are relatively high or

relatively low (demands are either extremely sensitive or extremely insensitive to
the length of NSP).

We have observed several distinctive decision-making patterns that might
contribute to the sub-optimality of the uncoordinated model. First, in the uncoor-
dinated model, the two parties frequently show disconnected decision-making
patterns. For example, when P increases, the retailer is overly aggressive while
the DCO 1is overly pessimistic in their stocking policies. As a result the supply
chain generates a large quantity of wasted leftovers. Second, we have observed
that in the decentralized model, the retailer tends to hold the inventories for an
excessive period of time. In the coordination model, the retailer reduces his/her
sales period so that the leftovers can be moved to the DCO earlier to take advan-
tage of a more time-elastic market. Finally, in the uncoordinated model the DCO
stocks less inventory and charges higher prices for the leftover items, thereby re-
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sulting in a lower system profit.

Our focus thus far does not allow us to study the possibility of a situation in-
volving multiple markdown periods. Generally, in a real-world application a
markdown operation may consist of more than one discount period. The multiple
markdown periods problem has been studied by Khouja [5] on a single company
level, but in this model demand in the markdown period is treated independently
of markdown rate and markdown timing. Future work on the two-party progres-
sive promotional markdown model could certainly shed further light on the topic.
Finally, the problem of jointly deciding normal sales price and markdown dis-
count rates also should receive future research effort.
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Appendix 1.

Let f; :=df(x)/dx (e.g., Dp,=0Dp/da). The following notations will be used in

the Appendix.
Ay ==Q-f(n)/ Dy <0, Ap:=-yg(p)/ Dp <0, ¢y =EnDyy >0,

¢P ::éPD'Py <09 ¢::§PDIP(1 <07 ¢S ::§PD})Q +yD}Va: and

6 := Dpo D" j”xdG—yD" G(&p) . Define =M%, and Q= Qp. The second

oL Noo

derivatives are given as follows:

Mg = Ay + [ QiggdF <0, where Qg =1, <0
Tl = Do [ 5 ydF + Aggy® + [0 dF <0
ad — “Naa Jg Y + N¢N +J‘O oo =
where QU = Apds’ +0<0

Mg, = —indy + | Q,dF , where Qf, = —Apg <0
" §A\V " " r 51’
my, =~ QdF <0, where Q) =2Dp, [ "xdG +¢p"2p

+7Dp, [ %dG <0,

” N ” " P 13 fl‘ "
My, = [ 7 Qg dF, where Q7 = [ " xDp,dG+ | " yxDp,dG
~yDyo G(Ep) + dspdp ,
» Ex " ~
Mg, = [,* QgdF <0, where Qg =G(&p)—gpdp <O.

The following three lemmas will be used to prove Proposition 1:

Lemma 1. Qp, <0 if g(x) has an Increasing Failure Rate (IFR): Let 17 := yDp, /D,
and failure rate p = g/é , then Q”QY = é(gp)(l +npép). Since 1+7 = —§P(_}(§P) <0

and §PG(§P)>_[§" xdG , via necessary condition (2) (1+ﬁ)§PG(§P)+c§pé(§P)
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<@+ %dG +£,G(£p) =0. Here, (1+NEpG(&p)+E,G(Ep) <0=77 <=1/G(&p).

Upon substitution reveals Qby <é((§P)(1—p§P/G(§P)) ; hence, Qf, <0 if

G(&p) < pép. Denote a(ép) = [p(ép)gp +exp{—jjp p(s)ds}i\, it is well known that

P 61’
G(&p)=1-exp {_.[05 p(s)ds} s thus, 1- exp{—_[o p(s)ds} <p(ép)ep =1 <w(ép). We
see that o(tp=0)=1and w;>0 if pe>0 (IFR). Thus, p;>0=0>1=

Lemma 2. dg = &pDpy + Do <0: Let & :=-yDy, /Dp, 20.

Proof: We see that ¢g <0 if &p>Ep, and Epy = -Dp'ds, hence, &py (£,>8, )20,
Epo (£,<E, )<0 , and &py(&,)=0 . Tt is seen that &pla>0)2&p(a=0) if
epla=0)28p since &y (6,58, )20, and &pla>0)<épla=0) if &pla=0)<Ep
since Epy (£,<E, )<0; thus, only one of &p 2Ep(Epe 20) or &p <Ep(6py <0)

can apply. However, £p —> o as a —1; hence, it must be that &p >&, and

$s<0 Vael0,1]. O

Lemma 3.1 For models A, B, and C, 1+y Dpyy /Dpo =1+ yDp, [Dp
Proof: Model A: Dy, = kp/4Dp, Dpy = —~kp(1-7)/2Dp and D, = —kp(1-a)/2Dp;

thus, Dy ! Dpy = -1/2(1-y) = D,/ Dp. Model B: Dpg,, =—kpkpy14Dp°, Dpy =

oy Pory

—kpy/2Dp and Dp, =—kpy!2Dp ; thus, Dpgy ! D = kpy/2Dp* = Dpp, I Dp. Model
C, Dpyy =kp, Dpy =—kp(L~y) and Dp, =~kp(1-a); thus, Dpe, | Dpy ==1/1~7)
= D}'Z),Y /DP . O

Lemma 3.2 Qf, =-Qf,¢s <0: Denote 1:=1+yDp,[Dp. Qg = Dpyn L;:” xdG +

ddprp — yDI'VaQ”QY (Lemma 3.1). Necessary condition (2) implies njf”xdG:

~£pG(&p) = Dipgnt | j xdG +pG(Ep) =0 = Dpy | (f xdG + pgpAp = -Qfy$. Therefore

Q”a'Y = —Qé}’(fp‘Dl,Da +yD1'Va) = —Qay¢s <0. O
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Proof of Proposition 1.1 We will show that QP(qC =1,y 1,) is concave in
(@,a,y), and then show that HIC\,P(Q,a,qC = I,;/C) is concave in (@,a) .

(a) QP(qC =1,y I,a) isconcavein (Q,a,y) since

(a.1) |H)|=Qgge<0Qpq<0 (or Qp, <0,0Q) <0).

(a.2) |Hy|> QL Qpq-(Qng)’ 20, |Hy|=Q Qgg-(Qg,)* >0, and

| Hy| = 04, Q- (Q,)% 20

" ” ” r N2 " ” ” " "
@.3) |Hy| = Qpa{Q), Q5 —(Q1)’} - 4, {95, %% ~ e |
+ 04 | Qg Ay Qe } <0
Proof:
(a.2) () QL Qg — QL) = Apds” x Ap —(Apps)? =0

(i) | Hy| = Q) Qg ~ () 20: Let a:=24,Dp, [ 2dG ,b=G(&p) ¢ = Apgp, and
d= yDl”JWjj”xdG . It is seen that |H2‘ = Q;YQQ‘Q—(Q'ZQY)Z =dlp +a+c® -b% -¢*

+2bc . Since dip >0, |H2|>O:=a—b2+2bc>a—b2+2b2>0 (By Lemma 1,
b<c).

(i) |Hy|= Q.0 (@

oSy )2 >0 : Define again 7 =1+yDp, /Dp <0 (via neces-

oy
sary condition (2)).

" " w2 2y Sp 2 ~ 2 2
Qo - Q) 2 22pfs* Dp, [ 7 2dG + (gpAps)” —{G(Ep) —bp2p} 85
= ¢Sz {2¢1[,/1Pé(§p)77—‘1 - G_(fp )2} via necessary condition (2) and Lemma 3.2
n

n-1 1

> 2{¢sé(§P)}2 {_77_ —5} = 2{¢sé(§P)}2 [77 ~2

2n

j >0 viaLemma 1 G(&) < gpip
(a.3) |Hy| = Qe {0 Qo —(2%,)?} - 0, { O, P ~ e |
+ 04 o{ Qg Oty ~ gl } <0

Proof: Define a = 2Dp, | xdG and b:= [ xDpodG + [ yxDp,dG - yDio G(&p) .

oy

It 1s seen that
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QUa{ Q) Qe — ()} = 45 b5 (ags —b% | 2pgs — 2bp) + OagYy,
-Ql, {0, Qe - e } = ~2pts (G(Ep) - dpip ) (GEp)es +)-0(Q,)°
na{Qa 0y ~ Qe | = -G(Ep) Apds (b + dsdpip) + p7ds (bhp — ads) .

|H3| = H{Q;YQZQQ - (Q&{ )2} -Ap {¢S(_}(§p)+b}2 <0, since

) 6{0) 0% - (g,)*} <0, and

— Dy —
i) {#sG(&p)+b} = Dpy {{1 + 7Df° = J 7 %dG + r:pG@p)}

Po

D; _
= Dp, {[1 + yDPY ]jjp xdG + éPG(fp)} =0 via Lemma 3.1
P

By (a.1), (a.2), and (a.8), Qp(q® = I,y/1,a) isconcave in (Q,a,y).
(b) HgP(Q,a,qC = I,;/C) is concave in (Q,a) .
Proof: Denote 10, = Aydy” + Lf” QLo dF <0. Since D44 <0, Tg,IInq —(I'I;'IQ)2

=14
> Ige

Maq - (Mgq)? =a+b>0 , where b= [ Ayip(dy ~¢5)*dF >0, and a=

2
a= Ij” ApdF x If” ApdsdF - ( J':” AppsdF ) >0 (Cauchy-Swarz’s inequality). Thus

HICVP (Q,a,q° =1,7°) is concave in (Q,a). 0

Proof of Proposition 1.2 (a) 0y/0Q lys)= _967 /Qﬁ'ﬁ <0 by Lemma 1. (b)
Oyl 0a loezy= —Qgy /Q;’,Y <0 by Lemma 3, and (¢c) da/0@Q Iyqy=-Tlg, /Tlge <0. 0

APPENDIX 2. PROOF OF PROPOSITION 2

Proof of Propositions 2.1 and 2.2: The proofs are similar to those in Proposi-
tions 1.1 and 1.2: 0
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Lemma 4. 0=1-p(&p),py <1- p(Epg)eps: Definew =1-C,,/Py;. q+C.0q/0C,
=0= ¢TI (@/A-w)=1. Since &y =T (@) and p=p(Ep)/T(Ep) =0/l -w),

pép; =0T Hw)/(1-w)=1. Finally, 0=1- P(Ep)epy S1—p(Eps)épy , since g > 1
and ¢(x) hasanIFRor p >0 Vye[&,éy]. 0

Propositions 2.3: (a) Both HICVPQQ" <0 and H%CQQ” <0 are decreasing func-

” "
tions. Since H?VPQQ 2> H%CQQ s QUC < QC .

! " ’

(b) Since M$p,, <0 and H%ga <0, both 1%p, and H%(;;’ are decreasing

functions. Thus, "¢ >a® if Ny, <NYS . Denote v(&;):= | j 72 40(Eps) > Dl
= ' Su Ty ! Sy ' -
~yT(L = péps)Divg }dF + [ Ep1nGDpo dF | then Ty, = [ ¥ yDy,dF +v(&;). Tt is

seen that du(&;)/0&; =0 since 1- p(&p)ép =0 (see Lemma 4); thus, H%ﬁ is

a constant (flat) function with respect to &; . Therefore, it is appropriate to com-

pare H%Pa and H%ﬁ at a specific point where &; =&y (H%ﬁ (& =¢&n) =

J& YDadF + [ &p7G(&p)DpydF ). Denote 6(¢p)i= | xdG - £,G(¢p). Tt is seen

! ! ;\' ! ¥ ~ h
that Mp, — g < [;" 7Dpe0(Ep)dF < 0. 0’ = 2£pg -G > 0 (since 1- p(&py)épy = 0)

and 6(0) = 0; thus, 6()20 and ¢ >aC.

(c) In both UC and centralized model 0y/dq =-Ilpg, /Tp, <0 and dy/ol =

”
Pqy

~ypgy Tiypy < 0. Thus, ¢© =T2¢% =% >,¢. 0



