Short-Term Load Forecasting Using Neural Networks and the Sensitivity of Temperatures in the Summer Season

신경회로망과 하절기 온도 민감도를 이용한 단기 전력 수요 예측

  • 하성관 (중부발전(주)) ;
  • 김홍래 (순천향대 공대 정보기술공학부) ;
  • 송경빈 (숭실대 공대 전기제어시스템공학부)
  • Published : 2005.06.01

Abstract

Short-term load forecasting algorithm using neural networks and the sensitivity of temperatures in the summer season is proposed. In recent 10 years, many researchers have focused on artificial neural network approach for the load forecasting. In order to improve the accuracy of the load forecasting, input parameters of neural networks are investigated for three training cases of previous 7-days, 14-days, and 30-days. As the result of the investigation, the training case of previous 7-days is selected in the proposed algorithm. Test results show that the proposed algorithm improves the accuracy of the load forecasting.

Keywords

References

  1. H. S. Hippert, C. E. Pedriera, and R. C. Souza, 'Neural Networks for Short-term Load forecasting: A Review and Evaluation', IEEE Trans. Power Systems, Vol. 16, no. 1, pp. 44-55, 2001 https://doi.org/10.1109/59.910780
  2. 지평식, 남상천, 임재윤, 김정훈, '분류된 부하패턴을 근거로 한 단기 전력 수요 예측', 대한전기학회논문지, 제 47권, 제 3호, pp. 269-275, 1998년 3월
  3. S. T. Chen, D. C. Yu, and A. R. Moghaddanmjo, 'Weather sensitive short-term load forecasting using nonfully connected artificial neural network,' IEEE Trans. Power Systems, Vol. 7, no. 3, pp. 1098-1105, 1992 https://doi.org/10.1109/59.207323
  4. K. L. Ho, Y. Y. Hsu, and C. C. Yang, 'Short-term load forecasting using a multilayer neural network with an adaptive learning algorithm,' IEEE Trans. Power Systems, vol. 7, no. 1, pp. 141-149, 1992 https://doi.org/10.1109/59.141697
  5. K. H. Kim, J. K. Park, K. J. Hwang, and S. H. Kim, 'Implementation of hybrid short-term load forecasting in an autonomous power system using artificial neural networks,' IEEE Trans. Power Systems, vol. 10, no. 3, pp. 1534-1539, 1995 https://doi.org/10.1109/59.466492
  6. D. C. Park, M. A. EI-Sharkawi, R. J. Marks II, L. E. Atlas, and M. J. Damborg, 'Electric load forecasting using an artifircial neural network,' IEEE Trans. Power Systems, vol. 6, no. 2, pp. 442-449, 1991 https://doi.org/10.1109/59.76685
  7. T. M. Peng, N. F. Hubele, and G. G. Karady, 'Advancement in the application of neural networks for short-term load forecasting,' IEEE Trans. Power Systems, vol. 7, no. 1, pp. 250-257, 1992 https://doi.org/10.1109/59.141711
  8. A. S. Alfuhaid, M. A. EI-Sayed, and M. S. Mahmoud, 'Cascaded artificial neural networks for short-term load forecasting,' IEEE Trans. Power Systems, vol. 12, no. 4, pp. 1524-1529, 1997 https://doi.org/10.1109/59.627852
  9. A. G. Bakirtzis, V.Petridis, S. J. Kiartzis, M. C. Alexiadis, and A. H. Maissis, 'A neural network short term load forecasting model for the Greek power system,' IEEE Trans. Power Systems, vol. 11, no. 2, pp. 858-863, 1996 https://doi.org/10.1109/59.496166
  10. M. H. Choueiki, C. A. Mount-Campbell, and S. C. Ahalt, 'Building a 'Quasi Optimal' neural network to solve the short-term load forecasting problem,' IEEE Trans. Power Systems, vol. 12, no. 4, pp.1432-1439, 1997 https://doi.org/10.1109/59.627838
  11. M. H. Choueiki, C. A. Mount-Campbell, and S. C. Ahalt, 'Implementing a weighted least squares procedure in training a neural network to solve the short-term load forecasting problem,' IEEE Trans. Power Systems, vol. 12, no. 4, pp. 1689-1694, 1997 https://doi.org/10.1109/59.627877
  12. T. W. S. Chow and C. T. Leung, 'Neural network based short-term load forecasting using weather compensation,' IEEE Trans. Power Systems, vol. 11, no. 4., pp. 1736-1742, 1996 https://doi.org/10.1109/59.544636
  13. I. Drezga and S. Rahman, 'Input Variable Selection for ANN-based Short-term Load Forecasting,' IEEE Trans. on Power Systems, Vol. 13, No. 4, pp. 1238-1244, Nov. 1998 https://doi.org/10.1109/59.736244
  14. A. Khotanzard, R. Afkhami-Rohani, T. L. Lu, A. Abaye, M. Davis, and D. J. Maratukulam, 'ANNSTLF-A neural-network-based electric laod forecasting system,' IEEE T. Neural Nets., vol. 8, no. 4, pp. 835-846, 1997 https://doi.org/10.1109/72.595881
  15. A. Khotanzard, R. Afkhami-Rohani, and D. Maratukulam, 'ANNSTLF-Artificial neural network short-term load forecasting-Generation three,' IEEE Trans. Power Systems, vol. 13. no. 4, pp. 1413-1422, 1998 https://doi.org/10.1109/59.736285
  16. A. Khotanzad, R. C. Hwang, A. Abaye, and D. Maratukulam, 'An adaptive modular artificial neural network hourly load forecaster and its implementation at electric utilities,' IEEE Trans. Power Systems, vol. 10, no. 3, pp. 1716-1722, 1995 https://doi.org/10.1109/59.466468
  17. S. J. Kiartzis, C. E. Zoumas, J. B. Theocharis, A. G. Bakirtzis, and V. Petridis, 'Short-term load forecasting in an autonomous power system using artificial neural networks,' IEEE Trans. Power systems, vol. 12, no. 4, pp. 1591-1596, 1997 https://doi.org/10.1109/59.627863
  18. R. Lamedica, A. Prudenzi, M. Sfoma, M. Caciotta, and V. O. Cencelli, 'A neural network based technique for short-term forecasting of anomalous load periods,' IEEE Trans. Power Systems, vol. 11, no. 4, pp. 1749-1756, 1996 https://doi.org/10.1109/59.544638
  19. K. Y. Lee, Y. T. Cha, and J. H. Park, 'Short-term load forecasting using an artificial neural network,' IEEE Trans. Power Systems, vol. 7, no. 1, pp. 124-132, 1992 https://doi.org/10.1109/59.141695
  20. C. N. Lu, H. T. Wu, and S. Vemuri, 'Neural network based short term load forecasting,' IEEE Trans. Power Systems, vol. 8, no. 1, pp. 336-342, 1993 https://doi.org/10.1109/59.221223
  21. O. Mohammed, D. Park, R. Mercant, T. Dinh, C. Tong, A. Azeem, J. Farah, and C. Drake, 'Practical experiences with an adaptive and neural network short-term load forecasting system,' IEEE Trans. Power Systems, vol. 10, no. 1, pp. 254-265, 1995 https://doi.org/10.1109/59.373948
  22. A. D. Papalexopoulos, S. Hao, and T. M. Peng, 'And implementation of a neural network based load forecasting model for the EMS,' IEEE Trans. Power Systems, vol. 9, no. 4, pp. 1956-1962, 1994 https://doi.org/10.1109/59.331456
  23. A. Piras, A. Germond, B. Buchenel, K. Imhof, and Y. Jaccard, 'Heterogeneous artificial neural network for short term electrical load forecasting,' IEEE Trans. Power Systems, vol. 11, no. 1, pp. 397-402, 1996 https://doi.org/10.1109/59.486124
  24. D. Srinivasan, A. C. Liew, and C. S. Chang, 'Forecasting daily load curves using a hybrid fuzzy-neural approach,' lEE Proc.-Gener. Transm. Distrib., vol. 141, no. 6, pp. 561-567, 1994 https://doi.org/10.1049/ip-gtd:19941288
  25. K. Liu, S. Subbarayan, R. R. Shoults, M. T. Manry, C. Kwan, F. L. Lewis, and J. Naccari, 'Comparison of very short-term load forecasting techniques,' IEEE Trans. Power Systems, vol. 11, no. 2, pp. 877-992, 1996 https://doi.org/10.1109/59.496169
  26. 송경빈, 하성관, '단기수요예측 알고리즘', 대한전기학회논문지, 제 53A권, 제 10호, pp. 529-535, 2004년 10월
  27. 전력수급계획 및 운용해석 종합시스템 개발에 관한 연구(2차년도 중간보고서), 전력연구원, TM94YJ15.9705, 1996
  28. K.-B. Song, Y.-S. Baek, D. H. Hong, and G. Jang, 'Short-Term Load Forecasting for the Holidays Using Fuzzy Linear Regression Method', IEEE Transactions on Power Systems, Vol. 20, No.1, pp. 96-101, February 2005 https://doi.org/10.1109/TPWRS.2004.835632