DOI QR코드

DOI QR Code

기체 대향류가 존재하는 미소 액체 개수로 유동의 압력강하 특성에 관한 이론 및 실험적 연구

Study on the Pressure Drop Characteristics of Liquid Flow in Open Microchannels with the Countercurrent Vapor Flow

  • 김성진 (한국과학기술원 기계공학과) ;
  • 남명용 (한국과학기술원 인공위성 연구센터) ;
  • 서정기 (한국과학기술원 기계공학과)
  • 발행 : 2005.06.01

초록

Because the liquid-vapor interfacial shear stress affects seriously the liquid flow and the maximum heat transport rate of the grooved wick heat pipe, an accurate modeling for the pressure drop characteristics of the liquid flow is required. A novel method for calculating the liquid pressure drop and the velocity profile of an open channel flow in a microchannel with an arbitrary cross-section is suggested and validated by experiments. An experimental apparatus for the Poiseuille number of the liquid flow in open rectangular microchannels with the hydraulic diameters of 0.40mm, 0.43mm, 0.48mm is used in order to reproduce real situations in the grooved wick heat pipe. Analytic results from the suggested method are compared with the experimental data and they are in a close agreement with each other.

키워드

참고문헌

  1. Faghri, A., 1995, Heat Pipe Science and Technology, Taylor & Francis, Washington, pp. 28-29
  2. B & K Engineering, 1977, Summary Report for Axially Grooved Heat Pipe Study, NASA Contract, No. NAS5-22562
  3. Khrustalev, D. and Faghri, A., 1994; 'Thermal Analysis of a Micro Heat Pipe,' J. Heat Transfer, Vol. 116, pp. 189-198 https://doi.org/10.1115/1.2910855
  4. Khrustalev, D. and Faghri, A., 1995, 'Thermal Characteristics of Conventional and Flat Miniature Axially Grooved Heat Pipes,' J. Heat Transfer, Vol. 117, pp. 1048-1054 https://doi.org/10.1115/1.2836280
  5. Hopkins, R., Faghri, A. and Khrustalev, D., 1999, 'Flat Miniature Heat Pipes with Micro Capillary Grooves,' J. Heat Transfer, Vol. 121, pp. 102-109 https://doi.org/10.1115/1.2825922
  6. Hufschmidt, E., Burck, E., Di Cola, G. and Hoffman, H., 1975, 'The Shearing Effect of Vapor Flow on Laminar Liquid Flow in Capillaries of Heat Pipes,' NASA TT-F-16601, pp. 1-21
  7. Suh, J. S., Greif, R. and Grigoropoulos, C. P., 2001, 'Friction in Micro-Channel Flows of a Liquid and Vapor in Trapezoidal and Sinusoidal Grooves,' Int. J. Heat Mass Transfer, Vol. 44, pp. 3103-3109 https://doi.org/10.1016/S0017-9310(00)00331-8
  8. Thomas, S. K., Lykins, R. C. and Yerkes, K. L., 2001, 'Fully Developed Laminar Flow in Trapezoidal Grooves with Shear Stress at the Liquid-vapor Interface,' Int. J. Heat and Mass Trasnfer, Vol. 44, pp. 3397-3412 https://doi.org/10.1016/S0017-9310(01)00007-2
  9. Ma, H. B., Peterson, G. P. and Peng, X. F., 1996, 'Experimental Investigation of Countercurrent Liquid-Vapor Interactions and Their Effect on the Friction Factor,' Exp. Thermal and Fluid Sci., Vol. 12, pp. 25-32 https://doi.org/10.1016/0894-1777(95)00064-X
  10. Shah, R. K., 1975, 'Laminar Flow Friction and Forced Convection Heat Transfer in Ducts of Arbitrary Geometry,' Int. J. Heat Mass Transfer, Vol. 18, pp. 849-862 https://doi.org/10.1016/0017-9310(75)90176-3
  11. Ayyaswamy, P. S., Catton, I. and Edwards, D. K., 1974, 'Capillary Flow in Triangular Grooves,' J. Appl. Mech. Vol. 41, pp. 332-336 https://doi.org/10.1115/1.3423288
  12. Plesh, D., Bier, W. and Schubert, K., 1991, 'Miniature Heat Pipes for Heat Removal From Microelectronic Circuits,' Proc. ASME Annual Meeting, Atlanta
  13. Lin, L., Ponnappan, R. and Leland, J., 2002, 'High Performance Miniature Heat Pipes,' Int. J. Heat Mass Transfer, Vol. 45, pp. 3131-3142 https://doi.org/10.1016/S0017-9310(02)00038-8
  14. Kim, S. J., Seo, J. K. and Do, K. H., 2003, 'Analytical and Experimenta Investigation on the Operational Characteristics and the Thermal Optimization of a Miniature Heat Pipe with a Grooved Wick Structure' Int. J. Heat Mass Transfer, Vol. 46, pp. 2051-2063 https://doi.org/10.1016/S0017-9310(02)00504-5
  15. Schlitt, K. R., Kirkpatrick, J. P. and Brennan, P. J., 1974, 'Parametric Performance of Extruded Axial Grooved Heat Pipes From 100K to 300K,' Proc. AIAA/ASME Thermophysics and Heat Transfer Conf., AIAA Paper No. 74-724
  16. Babin, B. R., Peterson, G. P. and Wu, D., 1989, 'Analysis and Testing of a Micro Heat Pipe During Steady-State Operation,' Proc. ASME/AIChE National Heat Transfer Conf., Philadelphia, Pennsylvania, 89-HT-17