$\cdot$구조물$\cdot$지반의 비선형 동적응답해석을 위한 직접수치해석기법의 개발

Direct Numerical Simulation on the Nonlinear Dynamic Responses among Wave, Structure and Seabed

  • 허동수 (경상대학교 토목환경공학부 해양산업연구소) ;
  • 김창훈 (한국해양대학교 건설환경공학부) ;
  • 이광호 (나고야대학교 대학원 공학연구과) ;
  • 김도삼 (한국해양대학교 건설환경공학부)
  • Hur Dong Soo (Institute of marine industry, Division of Civil and Environmental Engineering, Gyeongsang National University) ;
  • Kim Chang Hoon (Department of Construction and Environmental Engineering, Korea Maritime University) ;
  • Lee Kwang Ho (Department of Civil Engineering, Nagoya University) ;
  • Kim Do Sam (Department of Construction and Environmental Engineering, Korea Maritime University)
  • 발행 : 2005.06.01

초록

파랑하중하의 지반내 간극수압의 정확한 평가는 연안구조물에서 지반의 안정성을 검토하는데 중요한 요소이다. 파$\cdot$구조물 지반의 상호간섭에 대한 대부분의 기존 수치모델은 파동장과 지반부를 분리하여 해석하는 Hybrid기법을 적용하고 있기 때문에, 보다 고정도로 이들의 상호간섭을 모의하기 위해서는 파랑하중하에서 파$\cdot$구조물$\cdot$지반을 일체화한 수치모델의 개발이 필요하다. 본 연구에서는 투과층의 다양한 기하학적인 형태에 따라 층류저항까지 고려한 모델화 된 유체저항을 도입하여 파 구조물 지반의 비선형동적응답을 해석하기 위한 직접수치해석기법을 새롭게 제안하였다 직접수치해석기법은 Hybrid기법과는 달리 유체와 다공질매체의 접합면에서 특별한 경계조건을 필요로 하지 않는다. 파$\cdot$구조물$\cdot$지반의 상호간섭에 대해 기존의 수리실험결과와 본 연구의 계산결과를 비교함으로써 좋은 일치성을 확인할 수 있었다. 따라서 새롭게 제안된 본 수치기법은 파 구조물 지반의 비선형동적응답을 평가하는 유용한 기법으로 판단된다.

Accurate estimation of the wave-induced pore water pressure in the seabed is key factor in studying the stability of the seabed in the vicinity of coastal structure. Most of the existing numerical models for wave structure seabed interaction have been linked through applying hybrid numerical technique which is analysis method separating the wave field and seabed regime. Therefore, it is necessary to develope a numerical model f3r simulating accurately wave$\cdot$structure$\cdot$ seabed interaction under wave loadings by the single domain approach for wave field and seabed regime together. In this study, direct numerical simulation is newly proposed. In this model, modeled fluid drag has been used to detect the hydraulic properties according to the varied geometrical shape inside the porous media by considering the turbulence resistance as well as laminar resistance. Contrary to hybrid numerical technique, direct numerical simulation avoids the explicit formulation of the boundary conditions at the fluid/porous media interface. A good agreement has been obtained by the comparison between existed experimental results by hydraulic model test and direct numerical simulation results far wave $\cdot$structure$\cdot$seabed interaction. Therefore, the newly proposed numerical model is a powerful tool for estimating the nonlinear dynamic responses among a structure, its seabed foundation and water waves.

키워드

참고문헌

  1. 김도삼, 이광호, 김정수 (2002). 수중투과성구조물에 의한 쇄파를 수반한 파랑변형 및 유속장 해석. 한국해안.해양공학회지, 14(2), 171-181
  2. 김도삼, 이광호, 허동수, 김정수 (2001). VOF법에 기초한 불투과잠제 주변파동장의 해석. 대한토목학회논문집, 21(5-B), 551-560
  3. Brorsen, M. and Larsen, J. (1987). Source generation of nonlinear gravity waves with boundary integral equation method. Coastal Engrg., 11, 93-113 https://doi.org/10.1016/0378-3839(87)90001-9
  4. Ergun, S. (1952). Fluid flow through packed columns. Chem. Engrg. Prog., 48(2), 89-94.
  5. Hinatsu, M. (1992). Numerical simulation of unsteady viscous nonlinear waves using moving grid system fitted on a free surface. J. kansai Soc. Nav. Archit. Japan, 217,1-11
  6. Hirt, C.W. and Nichols, B.D. (1981). Volume of fluid(VOF) method for the dynamics of free boundaries. J. Compo Phys., 39, 201-225 https://doi.org/10.1016/0021-9991(81)90145-5
  7. Hur, D.S. and Mizutani, N. (2003). Numerical estimation of the wave forces acting on a three-dimensional body on submerged breakwater. Coastal Engrg., 47, 329-345 https://doi.org/10.1016/S0378-3839(02)00128-X
  8. Kawasaki, K. (1999). Numerical simulation of breaking and post breaking wave deformation process around a submerged breakwater. Coastal Engrg. in Japan, 41, 201-223 https://doi.org/10.1142/S0578563499000139
  9. Liu, P.L.-F. and O'Donnel. (1979). Wave induced forces on buried pipeline in permeabke seabed. Proceedings of 4th IntI. Conf. Civil Eng. in Ocean, ASCE, 111-121
  10. Madsen, O.S. (1978). Wave-induced pore pressures and effective stresses in a porous bed. Geotechnique, 28(4), 377-393 https://doi.org/10.1680/geot.1978.28.4.377
  11. Mase, H., Sakai, T. and Sakamoto, M. (1994). Wave-induced pore water pressures and effective stresses around breakwater. Ocean. Engrg., 21, 361-379 https://doi.org/10.1016/0029-8018(94)90010-8
  12. McDougal, W.G, Tsai, Y.T. and Soli itt. CK (1986). Verification of the analytical model for ocean wave-soil-caisson interaction. Proceedings of 4th IntI. Conf. on Coastal Engrg., ASCE, Taipei, Taiwan, 2089-2103
  13. Mizutani, N., Mostafa, A.M. and Iwata, K. (1998). Nonlinear regular wave, submerged breakwater and seabed dynamic interaction. Coastal Engrg., 43, 177-202
  14. Moshagen, N.H. and Torum, A. (1975). Wave induced pressure in permeable seabeds. J. Waterw. Harbor. and Coastal Eng., ASCE, 101,49-58
  15. Mostafa, A.M., Mizutani, N. and Iwata, K. (1999). Nonlinear wave, composite breakwater and seabed dynamic interaction. J. Waterw. Port Coast. Ocean Engrg., ASCE, 125, 88-97 https://doi.org/10.1061/(ASCE)0733-950X(1999)125:2(88)
  16. Mynett, AM. and Mei, C.C. (1982). Wave-induced stresses in a saturated poro-elastic sea bed beneath a rectangular caisson. Geotechnique, 32(3), 235-247 https://doi.org/10.1680/geot.1982.32.3.235
  17. Putnam, J.A. (1949). Loss of wave energy due to percolation in a permeable seabed bottom. Trans. of American Geophsical Union, 30(3), 349-356 https://doi.org/10.1029/TR030i003p00349
  18. Reid, R.O. and Kajiura, K. (1957). On the damping of gravity waves over a permeable sea bed. Trans. American Geophysical Union, 38(5), 662-666 https://doi.org/10.1029/TR038i005p00662
  19. Sakakiyama, T. and Kajima, R. (1992). Numerical simulation of nonlinear wave interacting with permeable breakwaters. Proc. 23rd Int. Conf. Coastal Engrg., ASCE, 1517-1530
  20. Shijie Liu and Jacob H. Masliyah. (1999). Non-linear flows in porous media. J. Non-Newtonian Fluid Mech., 86, 229-252 https://doi.org/10.1016/S0377-0257(98)00210-9
  21. Sleath, J.F.A. (1970). Wave induced pressures in bed of sand. J. Hydr. Div., ASCE, 96(HY2), 367-379
  22. Van Gent, M.R.A. (1995). Porous flow through rubble-mound material. J. Waterw. Port Coast. Ocean Eng., 121, 176-181 https://doi.org/10.1061/(ASCE)0733-950X(1995)121:3(176)
  23. Yamamoto, T., Koning, H.L., Sellmeiher, H. and van Hijum, E.V. (1978). On the response of a poro-elastic bed to water waves. J. Fluid Mech., 87, 193-206 https://doi.org/10.1017/S0022112078003006
  24. 蔣勤,高橋重雄,村西佳美,磯部雅彦. (2000). 波.地盤.構造物の相互作用に關するVOF-FEM豫測モデルの開發.日本海岸工學論文集, 47, 51-55