The Survival Rate and the Rate of Attached Egg Sac for Female Tigriopus japonicus Exposure to 4-nonylphenol

4-Nonylphenol에 노출된 Tigriopus japonicus 암컷의 생존율과 포란율

  • 곽인실 (한양대학교 자연과학대학 생명과학과) ;
  • 박명옥 (한양대학교 자연과학대학 생명과학과) ;
  • 이원철 (한양대학교 자연과학대학 생명과학과)
  • Published : 2005.06.01

Abstract

The aim of this study was to evaluate the attach rate and survival rate for the female harpacticoid Tigriopus japonicus response to 4-nonylphenol, known endocrine disrupter. The organisms were sampled by net sweeping on the Jeju Island in April, 2004 were reared in the laboratory condition. As the concentrations increased, the mortality was slowly increased. The first day for appearing dead individuals was clearly different between control conditions and treated conditions. When the female with egg sac was moved to experimental conditions for the adaptation, the female was dropped the egg sac from the body and then reproduced the egg sac into four to five days. Usually the female in control group recovered egg sac but that in the treated group made egg sac between $89\%\;and\;95\%$ on exposed individuals. The dead individuals for control conditions were showed on ten days after treating chemicals while those for treated conditions were appeared four to six day after exposure to chemicals.

포란한 성충 암컷 Tigriopus japonicus(요각류)를 내분비계 교란물질로 잘 알려져 있는 4-nonylphenol에 노출하여 생존율과 포란율의 변화를 살펴보았다. 실험생물은 2004년 4월 제주도 구안연안에서 플랑크톤망으로 쓸어 잡기로 채집한 후 실내순응을 한 달 동안 시켰다 치사율은 노출농도의 높아지면 증가하였으나 그 경향이 뚜렷하지 않았다. 반면, 노출 후 처음으로 치사한 개체가 발생하는 시기는 비처리군과 처리군에 따라 명백한 차이를 보였다. 포란한 암컷을 실험조건에 이동시키면 생리적인 변동으로 인해 알이 떨어졌다가 $4\~5$일 후 비처리군은 $100\%$ 포란을 회복하지만 처리 군에서는 $89\~95\%$가 회복되어 약제노출에 따른 영향을 보였다. 치사가 발생하는 시기는 비처리 시에는 10일 후부터이지만 노출 시에는 4에서 6일 후부터 발생하였다.

Keywords

References

  1. 국립환경연구원. 1999. 분비계 장애물질의 이해와 대응. 125pp
  2. Alvarez MMS and DV Ellis. 1990. Widespread neogastropod imposex in the Northeast Pacific: Implications for TBT contamination surveys. Mar. Pollut. Bull. 21:244-247 https://doi.org/10.1016/0025-326X(90)90343-7
  3. Andersen HR, B Halling-Sorensen and KO Kusk. 1999. A parameter for detecting estrogenic exposure in the copepod Acartia tonsa. Ecotoxicol. Environ. Saf. 44:56-61 https://doi.org/10.1006/eesa.1999.1800
  4. Baldwin WS, SE Graham, D Shea and GA LeBlanc. 1997. Metabolic androgenization of female Daphnia magna by the xenoestrogen 4-nonylphenol. Environ. Toxical. Chem. 16:1905-1911 https://doi.org/10.1897/1551-5028(1997)016<1905:MAOFDM>2.3.CO;2
  5. Bechmann RK. 1999. Effect of the endocrine disrupter nonylphenol on the marine copepod Tisbe battagliai. Sci. Total Environ. 233:33-46 https://doi.org/10.1016/S0048-9697(99)00177-1
  6. Billinghurst Z, AS Clare and MH Depledge. 2001. Effects of 4-n -nonylphenol and 17-oestradiol on early development of the barnacle Elminius modestus. J. Exp. BioI. Ecol. 257: 255-268 https://doi.org/10.1016/S0022-0981(00)00338-5
  7. Brown RJ, SD Rundle, TH Hutchinson, TD Williams and MB Jones. 2003. A copepod life-cycle test and growth model for interpreting the effects of lindane. Aquatic Toxicol. 63: 1-11 https://doi.org/10.1016/S0166-445X(02)00120-0
  8. Burton RS and MW Feldman. 1982. Changes in free amino acid concentrations during osmotic response in the intertidal copepod Tigriopus californicus. Compo Biochem. Physiol. part A: Physiol. 73:441-445 https://doi.org/10.1016/0300-9629(82)90182-7
  9. Choi KH, MS Suh and CH Kim. 1997. Effects of the Insect Growth Regulator Dimilin on the Survival Rate of Larvae, Adults, Egg Viability of Tigriopus japonicus Mori (Copepoda: Harpacticoida) Environ. Sci. 1(1):61-67
  10. Comber MHl, TD Williams and KM Stewart. 1993. The effect of nonylphenol on Daphnia magna. Water Res. 27:273-276 https://doi.org/10.1016/0043-1354(93)90086-W
  11. Crisp TM, ED Clegg, RL Cooper, DG Anderson, KP Baetcke, JL Hoffmann, MS Morrow, DJ Rodier, JE Schaeffer, LW Touart, MG Zeeman, YM Patel and WP Wood. 1997. Special report on environmental ED: an effects assessment and analysis. Washington DC: USEPA. EPA/630/R -961 012
  12. Hagiwara A, CS Lee and DJ Shiraishi. 1995. Some reproductive characteristies of the broods of the harpacticoid copepod Tigriopus japonicus cultured in different salinities. Fish Sci. 61:618-622
  13. Hakimzadeh Rand BP Bradley. 1990. The heat shock response in the copepod Eurytemora affinis (POPPE) Thermal BioI. 15:67-77 https://doi.org/10.1016/0306-4565(90)90050-R
  14. Ito T. 1970. The biology of a harpacticoid copepod, Tigriopus japonicus Mori. Journal of Faculty of Science Hokkaido University Series. Zoology 17:474-500
  15. Jobling S, D Sheahan, JA Osborne, P Mattiessen and JP Sumpter. 1996. Inhibition of testicular growth in rainbow trout (Oncorhyncus mykiss) exposed to estrogenic alkylphenolic chemicals. Environ. Toxicol. Chem. 15:194-202 https://doi.org/10.1897/1551-5028(1996)015<0194:IOTGIR>2.3.CO;2
  16. Koga F. 1970. On the Life History of Tigriopus japonicus MORl (Copepoda) J. Oceanogr. Soc. Japan 26:11-21 https://doi.org/10.1007/BF02764551
  17. LeBlanc GA and LJ Bain. 1997. Chronic toxicity of environmental contaminants: Sentinels and biomarkers. Environ. Health Perspect 105:65-80 https://doi.org/10.2307/3433398
  18. Marcial HS. A Hagiwara and TW Snell. 2002. Effects of known and suspected endocrine disrupting chemicals on the demographic parameters of the copepod Tigriopus japonicus. Fish Sci. (Suppl. 1):863-866
  19. Marcial HS, A Hagiwara and TW Snell. 2003. Estrogenic compounds affect development of harpacticoid copepod Tigriopus japonicus. Environ. Toxicol.. Chem. 22:3025-3030 https://doi.org/10.1897/02-622
  20. McLeese DW, V Zitko and CD Metcalfe. 1980. Lethality of aminocarb and the components of the aminocarb formulation to juvenile Atlantic salmon, marine invertebrates and a freshwater clam. Chemosphere 9:79-82 https://doi.org/10.1016/0045-6535(80)90092-2
  21. McLeese DW, DB Sergeant, CD Metcalfe, V Zitko and L Burridge. 1980. Uptake and excretion of aminocarb, nonylphenol, and pesticide diluent 585 by mussels (Mytilus edulis). Bull. Environ. Contam. Toxicol. 24:575-581 https://doi.org/10.1007/BF01608158
  22. Oehlmann J, U Schulte-Oehlmann, M Tillman and B Markert. 2000. Effects of endocrine disrupters on prosobranch snails (Mollusca: Gastropoda) in the Laboratory. Part 1. Bisphenol A and octylphenol as xeno-estrogens. Ectoxicol. 9:383-397 https://doi.org/10.1023/A:1008972518019
  23. Park C and MR Landry. 1993. Egg production by the subtropical copepod Undinula vulgaris. Mar. BioI. 117:415-421
  24. Purdom CE, PA Hardiman, VJ Bye, NC Eno, CR Tyler and JP Sumpter. 1994. Estrogenic effects of effluent from sewage treatment works. Chem. Ecol. 8:275-285 https://doi.org/10.1080/02757549408038554