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ON THE LIMITING DIFFUSION OF SPECIAL
DIPLOID MODEL IN POPULATION GENETICS

WoN CHoI

ABSTRACT. In this note, we characterize the limiting diffusion of
a diploid model by defining the discrete generator for the rescaled
Markov chain. We conclude that this limiting diffusion model is
with uncountable state space and mutation selection and special
“mutation or gene conversion rate”.

1. Introduction

Consider n locus model
X = (z1,22, - ,x4) € R,

A vpartition X describes a state of a chromosome and X means that
there exist d kinds of alleles which occupy z1 loci, z9 loci, -- -, x4 loci.
Let p; denote the frequency of chromosome of type Xj;.

Let S be a countable set. In population genetics theory we often
encounter diffusion process on the domain

K ={p = (pi)ies: pi 2 0, Zpi =1}
€S
We suppose that the vector p(t) = (p1,p2,- - ) of gene frequencies varies

with time ¢.
Let L be a second order differential operator on K

15}
L= Z 8 6pj+2bi(p)8—p—

i,j€S
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with domain C?(K), where {a;;} is a real symmetric and non-negative
definite matrix defined on K and {b;} is an measurable function defined
on K. The coeflicient {a;;} comes from chance replacement of individ-
uals by new ones after random mating and {b;} is represented by the
addition of “mutation or gene conversion rate” and the effect of natural
selection.

We assume that {a;;} and {b;} are continuous on K. Let Q =
C([0,00) : K) be the space of all K-valued continuous function de-
fined on [0,00). A probability P on (£2,F) is called a solution of the
(K, L, p)-martingale problem if it satisfies the following conditions,

(1) P(p(0) =p) =1.
(2) denoting My(t) = f(p(t)) — [y Lf(p(t))ds, (M;(t),Ft) is a P-
martingale for each f € C*(K).

The diffusion operator L was first introduced by Gillespie[5] in case
that the partition consists of two points. Choi[2] tried to apply the
stochastic differential equation for multi-allelic model. Also, Choi and
Lee[1] showed the uniqueness of martingale problem associated with
mean vector and obtained a complete description of ergodic property by
using of the semigroup method. A key point of their work was that the
(K, L, p)-martingale problem in population genetics model is related to
simpler stochastic differential equation, so they found various diffusion
properties for multi-allelic model.

The many diffusion model in population genetics was that each in-
dividual of some “type” and the set of S of types is finite. The case in
which S is uncountably infinite, however, requires a different approach.
The key idea is to topologize S and replace K by P(S), the set of Borel
probability measures on S with the topology of weak convergence.

If there is the empirical distribution y of the N genotypes in the
parent generation, then the empirical distribution of the N genotypes
in the offspring generation is determined from g in the four steps, cor-
responding, respectively, to reproduction and selection, recombination,
mutation, and random sampling. In particular, an infinite number of
zygotes are produced in Hardy-Weinberg form [6] as the initial step in
the life cycle.

In this note, we consider a special case of diploid models. We can
identify and characterize the limiting diffusion of this diploid model by
defining this discrete generator for the rescaled Markov chain. We con-
clude that the limiting diffusion model is with mutation selection and
special “mutation or gene conversion rate”.
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2. Main results

We start with diploid model. For each positive integer M, let wys be a
positive, symmetric, bounded, Borel function on 52, let Rps((p, q), dx x
dy) be a one-step transition function on S? x B(S5?) satisfying

Ru((p,q), dz x dy) = Rp((g, p), dy x dz),

and Qp(p,dzx) be a one-step transition function on S x B(S).

Let N be the diploid population size. We consider M = 2N gametes
and the mapping nys : SM — P(S) by letting
1
M

Here 6, € P(S) denotes the unit mass at p € S. The state space for this
model is

(2'1) "7M(p1’p2"" ’pM): (5P1+5P2+"'+5PM)'

K (S) = na(SM).
Given p € P(S), we define u; € P(S?) and po, u3 € P(S) by

(2.2) p1(dp x dq) = wa(p, @)u®(dp x dg)/{wm, 1°),
(2.3 pa(ds) = [ Rar((p.0),do  8) u(dp x da),
(2.4) i3(dz) = /S Qur(p, d)ia(dp).

The Markov chain has one-step transition function Pys(p,df) on
Kam(S) x (Kpr(S)) defined by

Pu(p,-) = /SM (3)™ (dpy X dpy X - X dpar) 6y (o, pasee ong) (-

We start with

LEMMA 1. Let {V-S—M), T€Zy(M=1,2,---)} be asequence of diploid
models as described. Assuming weak convergence of initial distributions,
it is hold that

{V[(Jj\\d/ft)pt >0} = {u,t>0} as M — oo,
where {pt,t > 0} is a diffusion process in P(S).

Proof. This result follows easily from using of a special case of Wright-
Fisher models. See Ethier and Kurtz [4]. O
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We can identify and characterize the limiting diffusion of the diploid
model by thinking of Lemma, 1.

In order to consider a limiting diffusion, we define the discrete gen-
erator Ly for the M-th rescaled Markov chain :

(Lmo)(p) =M (¢(v) = o(w)) Py (u, v)

Pu(S)
where P)y is given in the diploid models as described above.
We restrict our attention to test functions ¢ of the form

¢(v) = Bi(f1,v) - Belfe,v), () = (from) -+ (Foo 1)

where f1,---, fi € B(S) and {3;} is non-negative constant satisfying
that sup; 8; < +00. Assume that “mutation or gene conversion rate” is

Zﬁk (fi, ) — B; for every i < j,

keS

in the diploid models as described above. This means that mutations or
gene conversions occur with particular rate in case of 7 < j.

Then we have

THEOREM 2. Suppose that there exist a selection function o on S?
and bounded linear operator A, B on B(S) such that

(25) on(,0) =1+ 30(.0) + (M),
@0 [ f@Ru((p,0).dox )= 1) + %(fop, Q)+ o(M™),

27 [ £(@0Qu(p.da) = £() + 5 (ADE) + 047
Then there exist ay, f;, by, € B(P(S5)) such that

(Lmo)(p) — (Lo)(un) as M — oo
uniformly in p € Kp(S), where

L)) = Y. ang [] (fon +be1H fi 1)

1<i<j<k L4, i=1 Lil#1

Proof. By using of test function ¢(v) = B1(f1,v) - Be{fx, V), d(n) =
<f1nu> e <fk‘7/"’>a we have

k
(Lo (w) /rC (S){Hﬂz firv) = [1{Fis ) }PM (1, dv)
M i=1
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k
=M / H5i<fz',’f7M(p1,"' o)) (u3)M (dpy x - -+ x dpar)
SM 21

k
- H(fi:ﬂ>}

i=1

M M
=M{/SMM—kZ-.E(ﬁl---ﬂk)fl(phy--

k
FePi, ) (pa)™ (dpy x - - x dpy) — H(fuﬂ)}

i=1

uniformly in u € P(S).
Since we assume that “mutation or gene conversion rate” is

> Bulfism) = Bi = B for every i< j

keS

in a special case of the diploid model, we obtain from (2.1) and (2.4)
(Lmé)(w)

R £ S LS ST Y
( + ) 1<i<j<k

(Z Belfor ) — Bi — ﬁj) T (fi 13

keS L:l#4,5
~ M! k k
+M k(M_k)!g(fi,us Efz, )}
= Y Bil(fifma) = (Fis a)(Fsr 13))
1<i<j<k
(Zﬁk(fi,u) — B — ﬂj) IT ¢fia)
keS L:l5#4,7
k
+ > M((fi, us) = (o)) [T (From) T] (frops) + O(M)
i=1 Li<i L:>1

uniformly in p € P(S).
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On the other hand, by (2.2), (2.3), (2.4), and (2.5), (2.6), (2.7), it
follows

(o = (F+ g5 AT ) + oM

— <<f+ %Af) o+ %B (f+ Kl/[—Af) ,m> +o(MY)
= () + 3 L0AS ) + (BS, i)
+((f om)a, 4®) = (f, Yo, u*)} + o(M ™)

for all f, uniformly in u € P(S), where  is the projection of S? onto
its first coordinate.

Therefore, letting

af;.f; :ﬂl<flf]’ > f’ta f], (Zﬁk fh - ﬂ])

keS
and
by, = (Afis ) + (Bfi, %) + ((fi 0 m)a, 1) = (fi, u){0, %),

we have

(Lad)(p) = (£8) (1) +o(1)
uniformly in p € P(S5). O

Theorem 2 is generalized in the following

COROLLARY 3. Suppose the conditions (2.2), (2.3), and (2.4) are
satisfied and ¢ have the form

¢(/‘L) = F(<f1),u'>7 <f27#>) ) (fk)“)) = F((ﬂﬂ))
where F' € C2(RF). Then there exist ay, f;, by, € B(P(S)) such that

k
Mhinoo(EM(ﬁ)('u‘) = Z afi,ijZiZj(<f’ m) + Z bfiFZi(<f7 m)

1<i<j<k i=1

uniformly in p € Kpr(S), where F; and F,,, mean the partial derivative
with respect to ¢ and ¢, j, respectively.
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Proof. If we let
o) = F({f1, 1), (fo, 1), -+, {fir ) = F((£, 1))

af;.fi = Bz(fzfm > fza f], (Z Bk fza ﬂ])

keS
by, = (Afi, 1) + (Bfi, u?) + {(fio m)o, u?) — (fs, (o, 4°),

this result is immediate from a second order Taylor expansion with The-
orem 2. U

EXAMPLE. (From countable model to uncountably infinite model)
We let the coefficients {b;(p)} have the form b;(p) = g;(p) + hi(p) in the
case in which § is countable, where

d
= Prgis
k=1

Gis >0 for i £ j, qi=—)  aij-
J#
For i # j, qi; represents a rate of change of type X; to type Xj.
For a countable number of types X, Xs,- -, a standard model for
incorporating natural selection is to take

(2.8) hi(p) =pi | D pemai — Y pimmyi

keS J, les

The interpretation is that X7, X, - are possible alleles carried by a
gamete at some gene locus, and m;; is a fitness coefficient of the genotype
(X;, X;) such that mj; = my;. If p; is the frequency of type X;, then
p;p; represents the frequency of (X;, Xj;).

Let m be a symmetric function on C(S % S). We denote m(X;, X;) by
m;j. Let H be a function with the following property : given any finite
set S = {X1, X, , } of chromosome of type X;, there exist h1, hg,---
such that

(2.9) H(p,0) =Y _h;(p)o(X;)

je8
for each pp =3, s pidx, and o € C(S).
From (2.8) and (2.9) we find that the correct choice for H is

(2.10) H(p,0) = (mo, p ® p) — (o, p)(m, p ® )
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where 1 ® v denote the product measure on S x S. If m; = m; + my,
then (2.8) simplifies to

hi(p) = pi | i — Y pyiy
JjES1
Correspondingly, if m(X1, X2) = m(X1) + m(X2), then (2.10) simplifies
to
H(N? 0) = <m0’ H) - (’ﬁ’l,, /J‘> <0’ N)
In order to apply Dawson’s theorem [3], we need a continuous mapping
p— f,. from P(s) to C(S) such that

H(/”ﬂ Ot) = <fu01, p,) - <fua,u/><a7,u'>'

Therefore, we conclude that the model of Theorem 2 is with mutation
selection and “mutation or gene conversion rate” of

> Bl fi ) — Bi — B; for every i < j,

keS
in the diploid models as described above.
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