UNIFORM TOPOLOGY ON DIFFERENCE ALGEBRAS

ARSHAM BORUMAND SAEID

ABSTRACT. In this paper, we consider a collection of ideals of a difference algebra X. We use the concept of congruence relation with respect to ideals to construct a uniformity that induces a topology on X which makes this to a topological difference algebras. We study the properties of this topology regarding different ideals.

1. Introduction

In [2], Hausdorff introduced the order group, which is a general algebraic system combining a partial ordered set and a group. In [7], Meng introduced the concept of difference algebra as result of combining a partial order and set difference operation. In [8], E. Roh et. al. study some algebraic property of this algebraic structure. In this note we consider a collection of ideals and use congruence relation with respect to ideals to define a uniformity and make the difference algebra into a uniform topological space. Then we obtain some related results which have been mentioned in the abstract.

2. Preliminaries

DEFINITION 2.1. [7] A difference algebra is an algebra $(X, *, \leq, 0)$ with binary operation * and a binary relation \leq on X and constant $0 \in X$ such that:

- (D1) (X, \leq) is a poset,
- (D2) $x \le y$ implies $x * z \le y * z$,
- (D3) $(x * y) * z \le (x * z) * y$,
- (D4) $0 \le x * x$,
- (D5) $x \leq y$ if and only if $x * y \leq 0$.

Received March 17, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 06F35, 54E15, 54H99.

Key words and phrases: uniformity, difference algebra, ideals, topological difference algebra.

We shall write the binary relation " \leq " by putting $x \leq y$ if and only if $(x,y) \in \leq$, for convenience.

LEMMA 2.2. [7] In each difference algebra X, the following relations hold for all $x, y, z \in X$:

- (1) (x*y)*z = (x*z)*y,
- (2) x * x = 0,
- (3) $x * y \le z$ implies that $x * z \le y$,
- (4) (x*(x*y))*y = 0,
- (5) $x \le y$ implies that $z * y \le z * x$,
- (6) x * (x * (x * y)) = x * y,
- (7) x * 0 = x,
- (8) 0*(x*y) = (0*x)*(0*y),
- (9) $(x * y) * (x * z) \le z * y$.

DEFINITION 2.3. [8] A weak ideal of a difference algebra X is a nonempty subset I of X such that for all $x, y \in X$, we have

- (I1) $0 \in I$,
- (I2) $x * y \in I$ and $y \in I$ imply $x \in I$.

Definition 2.4. [8] A weak ideal I of a difference algebra X is called ideal if it satisfies

(I3) $x \leq y$ and $y \in I$ imply $x \in I$.

DEFINITION 2.5. A congruence relation on a difference algebra X is an equivalence relation R on X moreover if xRy and uRv, then we have

- (Cg1) (x*u)R(y*v),
- (Cg2) (x * u)R(y * v) and (u * x)R(v * y).
- (Cg3) $(x \wedge u)R(y \wedge v)$ and $(x \vee u)R(y \vee v)$.

Theorem 2.6. [8] Let I be an ideal of a difference algebra X. Define:

$$x \equiv_I y$$
 if and only if $x * y \in I$ and $y * x \in I$.

Then \equiv_I is a congruence relation on X.

3. Uniformity in difference algebra

From now on $(X, *, \leq, 0)$ (briefly, X) is a difference algebra, unless otherwise is stated.

Let X be a nonempty set and U, V be any subset of $X \times X$. Define:

$$\begin{split} U \circ V &= \{(x,y) \in X \times X \mid (z,y) \in U \text{ and } (x,z) \in V, \text{ for some } z \in X\}, \\ U^{-1} &= \{(x,y) \in X \times X \mid (y,x) \in U\}, \\ \Delta &= \{(x,x) \in X \times X \mid x \in X\}. \end{split}$$

DEFINITION 3.1. [5] By a uniformity on X we shall mean a nonempty collection \mathcal{K} of subsets of $X \times X$ which satisfies the following conditions:

- $(U_1) \Delta \subseteq U$ for any $U \in \mathcal{K}$,
- (U_2) if $U \in \mathcal{K}$, then $U^{-1} \in \mathcal{K}$,
- (U_3) if $U \in \mathcal{K}$, then there exist a $V \in \mathcal{K}$, such that $V \circ V \subseteq U$,
- (U_4) if $U, V \in \mathcal{K}$, then $U \cap V \in \mathcal{K}$,
- (U_5) if $U \in \mathcal{K}$, and $U \subseteq V \subseteq X \times X$ then $V \in \mathcal{K}$.

The pair (X, \mathcal{K}) is called a uniform structure (uniform space).

THEOREM 3.2. Let Λ be an arbitrary family of ideals of X which is closed under intersection. If

$$U_I = \{(x, y) \in X \times X \mid x \equiv_I y\}$$

and

$$\mathcal{K}^* = \{ U_I \mid I \in \Lambda \},\,$$

then K^* satisfies the conditions (U_1) - (U_4) .

Proof. (U_1) : Since I is an ideal of X then we have $x \equiv_I x$ for any $x \in X$, hence $\Delta \subseteq U_I$, for all $U_I \in \mathcal{K}^*$.

 (U_2) : For any $U_I \in \mathcal{K}^*$, we have

$$(x,y) \in (U_I)^{-1} \Leftrightarrow (y,x) \in U_I \Leftrightarrow y \equiv_I x \Leftrightarrow x \equiv_I y \Leftrightarrow (x,y) \in U_I.$$

 (U_3) : For any $U_I \in \mathcal{K}^*$, the transitivity of \equiv_I implies that $U_I \circ U_I \subseteq U_I$.

 (U_4) : For any $U_I, U_J \in \mathcal{K}^*$, we claim that $U_I \cap U_J = U_{I \cap J}$. Let $(x, y) \in U_I \cap U_J$. Then $x \equiv_I y$ and $x \equiv_J y$. Hence $x * y \in I$, $y * x \in I$ and $x * y \in J$, $y * x \in J$. Then $x \equiv_{I \cap J} y$ and hence $(x, y) \in U_{I \cap J}$.

Conversely, let $(x, y) \in U_{I \cap J}$. Then $x \equiv_{I \cap J} y$, hence $x * y \in I \cap J$ and $y * x \in I \cap J$. Then $x * y \in I$, $y * x \in I$, $x * y \in J$ and $y * x \in J$. Therefore $x \equiv_I y$ and $x \equiv_J y$. Then $(x, y) \in U_I \cap U_J$. So $U_I \cap U_J = U_{I \cap J}$. Since $I, J \in \Lambda$, then $I \cap J \in \Lambda$, $U_I \cap U_J \in \mathcal{K}^*$.

THEOREM 3.3. Let $\mathcal{K} = \{U \subseteq X \times X \mid U_I \subseteq U \text{ for some } U_I \in \mathcal{K}^*\}$. Then \mathcal{K} satisfies a uniformity on X and the pair (X, \mathcal{K}) is a uniform structure.

Proof. By Theorem 3.2, the collection \mathcal{K} satisfies the conditions (U_1) — (U_4) . It suffices to show that \mathcal{K} satisfies (U_5) . Let $U \in \mathcal{K}$ and $U \subseteq V \subseteq X \times X$. Then there exists a $U_I \subseteq U \subseteq V$, which means that $V \in \mathcal{K}$. This proves the theorem.

Let $x \in X$ and $U \in \mathcal{K}$. Define

$$U[x] := \{ y \in X \mid (x, y) \in U \}.$$

Theorem 3.4. Given a difference algebra X, then

$$T = \{G \subseteq X \mid \forall \ x \in G, \exists \ U \in \mathcal{K}, U[x] \subseteq G\}$$

is a topology on X.

Proof. It is clear that \emptyset and the set X belong to T. Also from the definition, it is clear that T is closed under arbitrary union. Finally to show that T is closed under finite intersection, let $G, H \in T$ and suppose $x \in G \cap H$. Then there exist U and $V \in \mathcal{K}$ such that $U[x] \subseteq G$ and $V[x] \subseteq H$. Let $W = U \cap V$, then $W \in \mathcal{K}$. Also $W[x] \subseteq U[x] \cap V[x]$ and so $W[x] \subseteq G \cap H$ therefore $G \cap H \in T$. Thus T is topology on X. \square

Note that for any x in X, U[x] is an open neighborhood of x.

DEFINITION 3.5. Let (X, \mathcal{K}) be a uniform structure. Then the topology T is called the uniform topology on X induced by \mathcal{K} .

Proposition 3.6. Topological space (X,T) is completely regular.

Proof. See Theorem 14.2.9,
$$[5]$$
.

4. Topological property of space (X,T)

Let X be a difference algebra and C, D subsets of X. Then we define C * D as follows:

$$C*D = \{x*y \mid x \in C, y \in D\}$$

Let X be a difference algebra and T a topology defined on the set X. Then we say that the pair (X,T) is a topological difference algebra if the operation * is continuous with respect to T. The continuity of the operations * is equivalent to having the following property satisfied:

(C): Let O be an open set and $a, b \in X$ such that $a * b \in O$. Then there are open sets O_1 and O_2 such that $a \in O_1$, $b \in O_2$ and $O_1 * O_2 \subseteq O$.

THEOREM 4.1. The pair (X,T) is a topological difference algebra.

Proof. Let us first prove (C). Indeed assume that $x * y \in G$, with $x, y \in X$ and G an open subset of X. Then there exist $U \in \mathcal{K}$, $U[x*y] \subseteq G$ and an ideal I such that $U_I \subseteq U$. We claim that the following relation holds:

$$U_I[x] * U_I[y] \subseteq U[x * y]$$

Indeed for $h \in U_I[x]$ and $k \in U_I[y]$ we get that $x \equiv_I h$ and $y \equiv_I k$. Hence $x * y \equiv_I h * k$. From that $(x * y, h * k) \in U_I \subseteq U$. Hence $h * k \in U_I[x * y] \subseteq U[x * y]$. Then $h * k \in G$. Thus the condition (C) is verified.

THEOREM 4.2. [5] Let X be a set and $S \subset \mathcal{P}(X \times X)$ be a family such that for every $U \in S$ the following conditions hold:

- (a) $\Delta \subseteq U$,
- (b) U^{-1} contains a member of S, and
- (c) there exists a $V \in \mathcal{S}$, such that $V \circ V \subseteq U$.

Then there exists a unique uniformity \mathcal{U} , for which \mathcal{S} is a subbase.

THEOREM 4.3. If we let $\mathcal{B} = \{U_I \mid I \text{ is an ideal of } X\}$, then \mathcal{B} is a subbase for a uniformity of X. We denote this topology by S.

Proof. Since \equiv_I is an equivalence relation, then it is clear that \mathcal{B} satisfies the axioms of Theorem 4.2.

We say that topology σ is finer than τ if $\tau \subseteq \sigma$ as subsets of the power set. Then we have:

COROLLARY 4.4. Topology S is finer than T.

Theorem 4.5. Any ideal in the collection Λ is a clopen subset of X.

Proof. Let I be an ideal of X in Λ and $y \in I^c$. Then $y \in U_I[y]$ and we get that $I^c \subseteq \bigcup \{U_I[y] \mid y \in I^c\}$. We claim that, $U_I[y] \subseteq I^c$, for all $y \in I^c$. Let $z \in U_I[y]$, then $z \equiv_I y$. Hence $y * z \in I$. If $z \in I$ then $y \in I$, that is a contradiction. So $z \in I^c$ and we get $\bigcup \{U_I[y] \mid y \in I^c\} \subseteq I^c$. Hence $I^c = \bigcup \{U_I[y] \mid y \in I^c\}$ and since $U_I[y]$ is open for all $y \in X$, I is a closed subset. We show that $I = \bigcup \{U_I[y] \mid y \in I\}$. If $y \in I$ then $y \in U_I[y]$ and we get $I \subseteq \bigcup \{U_I[y] \mid y \in I\}$. Let I if I is also an open subset of I.

THEOREM 4.6. For any $x \in X$ and $I \in \Lambda$, $U_I[x]$ is a clopen subset of X.

Proof. We show that $(U_I[x])^c$ is open. Let $y \in (U_I[x])^c$, then $x * y \in I^c$ or $y * x \in I^c$. Let $y * x \in I^c$. Hence by Theorems 4.1 and 4.2, $(U_I[y] * U_I[x]) \subseteq U_I[y * x] \subseteq I^c$. We claim that: $U_I[y] \subseteq (U_I[x])^c$. Let

 $z \in U_I[y]$, then $z * x \in (U_I[z] * U_I[x])$. So $z * x \in I^c$ then we get $z \in (U_I[x])^c$. Hence $U_I[x]$ is closed. It is clear that $U_I[x]$ is open. So $U_I[x]$ is clopen subset of X.

A topological space X is connected if and only if has only X and \emptyset as clopen subsets. Therefore we have

COROLLARY 4.7. The space (X,T) is not a connected space.

We denote the uniform topology obtained by an arbitrary family Λ , by T_{Λ} and if $\Lambda = \{I\}$, we denote it by T_{I} .

Theorem 4.8. $T_{\Lambda} = T_J$, where $J = \bigcap \{I \mid I \in \Lambda\}$.

Proof. Let K and K^* be as in Theorems 3.2 and 3.3. Now consider $\Lambda_0 = \{J\}$, define:

$$(\mathcal{K}_0)^* = \{U_J\}$$

and

$$\mathcal{K}_0 = \{ U \mid U_J \subseteq U \}.$$

Let $G \in T_{\Lambda}$. So for all $x \in G$, there exist $U \in \mathcal{K}$ such that $U[x] \subseteq G$. From $J \subseteq I$ we get that $U_J \subseteq U_I$, for all ideals I of X. Since $U \in \mathcal{K}$, there exist $I \in \Lambda$ such that $U_I \subseteq U$. Hence $U_J[x] \subseteq U_I[x] \subseteq G$. Since $U_J \in \mathcal{K}_0$, $G \in T_J$. So $T_{\Lambda} \subseteq T_J$.

Conversely, let $H \in T_J$ then for all $x \in H$, there exist $U \in \mathcal{K}_0$ such that $U[x] \subseteq H$. So $U_J[x] \subseteq H$ and sine Λ is closed under intersection, $J \in \Lambda$. Then we get $U_J \in \mathcal{K}$ and so $H \in T_\Lambda$. Thus $T_J \subseteq T_\Lambda$.

COROLLARY 4.9. Let I and J be ideals of X and $I \subseteq J$. Then J is clopen in topological space (X, T_I) .

Proof. Consider $\Lambda = \{I, J\}$. Then by Theorem 4.8, $T_{\Lambda} = T_{I}$ and therefore J is clopen in topological space (X, T_{I}) .

THEOREM 4.10. Let I and J be ideals of X. Then $T_I \subseteq T_J$ if $J \subseteq I$.

Proof. Let $J \subseteq I$. Consider:

$$\Lambda_1 = \{I\}, \, \mathcal{K}_1^{*} = \{U_I\}, \, \mathcal{K}_1 = \{U \mid U_I \subseteq U\} \text{ and }$$

$$\Lambda_2 = \{J\}, \, \mathcal{K}_2^* = \{U_J\}, \, \mathcal{K}_2 = \{U \mid U_J \subseteq U\}.$$

Let $G \in T_I$. Then for all $x \in G$, there exist $U \in \mathcal{K}_1$ such that $U[x] \subseteq G$. Since $J \subseteq I$, then $U_J \subseteq U_I$ and since $U_I[x] \subseteq G$, we get $U_J[x] \subseteq G$. $U_J \in \mathcal{K}_2$ and so $G \in T_J$.

Recall that a uniform space (X, \mathcal{K}) is totally bounded if for each $U \in \mathcal{K}$, there exists $x_1, \ldots, x_n \in X$ such that $X = \bigcup_{i=1}^n U[x_i]$ and X is compact if any open cover of X has a finite subcover.

THEOREM 4.11. Let I be an ideal of X. Then the following conditions are equivalent:

- (1) Topological space (X, T_I) is compact,
- (2) Topological space (X, T_I) is totally bounded,
- (3) There exists $P = \{x_1, x_2, \dots, x_n\} \subseteq X$ such that for all $a \in X$ there exists $x_i \in P$ where $a * x_i \in I$ and $x_i * a \in I$.

Proof. (1) \rightarrow (2): It is clear by Theorem 14.3.8 of [5].

(2) \to (3): Let $U_I \in \mathcal{K}$ since (X, T_I) is totally bounded, then there exists $x_1, x_2, \ldots, x_n \in I$ such that $X = \bigcup_{i=1}^n U_I[x_i]$. Now let $a \in X$ then there exist x_i such that $a \in U_I[x_i]$, therefore $a * x_i \in I$ and $x_i * a \in I$.

 $(3) \to (1)$: For all $a \in X$ by hypothesis there exists $x_i \in P$ where $a * x_i \in I$ and $x_i * a \in I$. Hence $a \in U_I[x_i]$, thus $X = \bigcup_{i=1}^n U_I[x_i]$. Now let

 $X = \bigcup_{\alpha \in \Omega} O_{\alpha}$, where each O_{α} is an open set of X, then for any $x_i \in X$

there exists $\alpha_i \in \Omega$ such that $x_i \in O_{\alpha_i}$, since O_{α_i} is an open set then $U_I[x_i] \subseteq O_{\alpha_i}$, so $X = \bigcup_{i=1}^n U_I[x_i] \subseteq \bigcup_{i=1}^n O_{\alpha_i}$, therefore $X = \bigcup_{i=1}^n O_{\alpha_i}$ which

means that (X, T_I) is compact.

THEOREM 4.12. If I is an ideal of X, then $U_I[x]$ is a compact set in topological space (X, T_I) , for all $x \in X$.

Proof. Let $U_I[x] \subseteq \bigcup_{\alpha \in \Omega} O_{\alpha}$, where each O_{α} is an open set of X. Since $x \in U_I[x]$, then there exists $\alpha \in \Omega$ such that $x \in O_{\alpha}$. Then $U_I[x] \subseteq O_{\alpha}$. Hence $U_I[x]$ is compact.

References

- [1] G. Birkhoff, Lattice Theory, New York, 1940.
- [2] F. Hausdorff, Grunzunge de Mengenlehhre, Lepzing, 1914.
- [3] Y. Imai and K. Iseki, On axiom systems of propositional calculi, XIV Proc. Japan Academy, 42 (1966), 19–22.
- [4] I. M. James, Introduction to Uniform Spaces, Cambridge University Press, New York, 1990.
- [5] K. D. Joshi, Introduction to General Topology, New Age International Publisher, India, 1997.
- [6] W. Page, Topological Uniform Structures, Dover Publication, Inc. New York, 1988.

- [7] J. Meng, difference algebras, Selected paper on BCK and BCI-algebras 1 (1992) 33–39.
- [8] E. H. Roh, Y. B. Jun, S. Y. Kim, and W. H. Shim, On difference algebras Kyungpook Math. J. 43 (2003), 407–414.

ARSHAM BORUMAND SAEID, DEPARTMENT OF MATHEMATICS, ISLAMIC AZAD UNIVERSITY OF KERMAN, KERMAN, IRAN

E-mail: arsham@iauk.ac.ir