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ON A COMPACT AND MINIMAL
REAL HYPERSURFACE IN A
QUATERNIONIC PROJECTIVE SPACE

YEONG-WU CHOE AND IMSOON JEONG

ABSTRACT. For a compact and orientable minimal real hypersur-
face M in QP™, we prove that if the minimum of the sectional
curvatures of M is 3/(4n — 1), then M is isometric to the geodesic
minimal hypersphere Mgn_l.

1. Introduction

Let QP™ be a quaternionic projective space of real dimension 4n,
n > 2, with the Fubini-Study metric G of constant Q-sectional curvature
4 and let M be a connected (4n-1)-dimensional real hypersurface of Q@ P™.

Let N be a local unit normal vector field to M. We denote by
{Ji}i=1,2,3 is a local basis of the quaternionic Kéhler structure of QP™.
Then U; = —J;N,i = 1,2,3 are tangent to M, which will be called
structure vectors [10].

Now we put f;(X) = ¢g(X,U;), for arbitrary X € TM,: = 1,2,3,
where T M is the tangent bundle of M and ¢ denotes the Riemannian
metric induced from the metric G.

Now, let us consider the following conditions that the second funda-
mental tensor A of M in QP™ may satisfy

3
(1.1) (VxAY =D {g(X,$:Y)U; - fi(Y)$: X},
=1
(1.2) 9((Agi — p:A)X,Y) =0,

for any 4 = 1, 2,3 and any tangent vector fields X and Y to M.
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Pak[10] investigated the above conditions and showed that they are
equivalent to each other. Moreover he used the condition 1.1 to find
a lower bound of ||[VA| for real hypersurfaces in QP™. In fact, it was
shown that ||VA||> > 24(n — 1) for any hypersurfaces and the equality
holds if and only if the condition 1.1 holds. In this case it was also
known that M is locally congruent to a real hypersurface of type A; or
type Az, which means a tube of radius r over QP*(1 < k< n—1) in
the notion of Berndt[1], and Martinez and Pérez[8].

Now the purpose of this paper is to give another new characterization
of a minimal real hypersurface in QP™ by using Lemmas, to be stated
in Section 3, which is a quaternionic version of result of Konl[5].

Now we prepare the following theorem [5] without proof in order to
compare with our result :

THEOREM 1.1. Let M be a compact orientable real minimal hypersur-
face of CP™. If the sectional curvature K of M satisfies K > 1/(2n—1),
then M is the geodesic minimal hypersphere Mg, _,.

2. Preliminaries

A quaternionic Kihler manifold is a Riemannian manifold (M, G)
on which there exists a 3-dimensional vector bundle V of tensors of
type (1,1) with a local basis of almost Hermitian structures {J;}i=123
satisfying the following conditions :

1. J2 = —id, i = 1,2,3, J;J; = —J;J; = Ji, where id denotes the

identity endomorphism on TM and (i,7, k) is a cyclic permutation
of (1,2,3).
2. If V denotes the Riemannian connection on M, then there exist
three local 1-forms P;,i =1,2,3 on M such that
VxdJ; :~P)€(X)Jj - Py(X)Jx
for all vector field X on M, where (3, j, k) is a cyclic permutation
of (1,2,3).

Let Q(X) be the 4-dimensional subspace spanned by vectors X, J1 X,
J2X and J3X for any X € Tp]\;I ,p € M. If the sectional curvature of any
section for Q(X) depends only on X, we call it Q-sectional curvature.
A quaternionic space form of @-sectional curvature c¢ is a connected
quaternionic Kahler manifold with constant ()-sectional curvature c.

The standard models of quaternionic space forms are the quaternionic
projective space QP™(c)(c > 0), the quaternionic space @"(c = 0) and
the quaternionic hyperbolic space QH™(c)(c < 0) ([1]).
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The curvature tensor R of QP"(c),n > 2, is given by
3
R(X,Y)Z = E[G(Y, 2)X - G(X, Z)Y + 3 _{G(IkY, Z2) kX
k=1
— G X, Z)JkY — 2G(J X, Y) I, Z}]

for any vector fields X,Y and Z on QP™(c)([2]).

From now on we denote by QP" the quaternionic projective space of
constant (J-sectional curvature 4.

Let M be a connected (4n — 1)-dimensional real hypersurface of QP™
and let N be a local unit normal vector field to M. The Riemannian
connection V in QP™ and V in M are related by the following formulas
for arbitrary vector fields X and Y tangent to M:

(2.1) VxY = VxY +g(AX,Y)N
and
(2.2) VxN = —AX,

where A is the second fundamental tensor of M in QP". The mean

1
curvature h of M is defined by h = yr— TrA.
If h = 0, then M is said to be minimal. Eigenvectors of the second
fundamental tensor A are called principal curvature vectors and called

the corresponding eigenvalues principal curvatures. We put
(2.3) JiX=¢,X + fi(X)N, JIN=-U;, i=1,2,3

for any vector field X tangent to M, where ¢; X is the tangential parts

of J; X, ¢; are tensors of type (1,1) and f; are 1-forms for ¢ = 1,2, 3.
As J;?2 = —id,i = 1,2, 3, id denoting the identity endomorphism on

TQP™, we get

(24) 97X =X+ filX)U;, fil¢iX)=0, Ui =0, i=1,2,3

for any vector field X tangent to M. As JiJ; = —J;J; = Ji, (4,5, k)
being a cyclic permutation of (1,2,3), we obtain

(2.5) fi(Ui) =1, fi(U;)= fi(Ux) =0,

(2.6) $iX = Qi X — fr(X)Uj = —d; X + f;(X)Uk
and

(2.7) FilX) = fi (e X) = — fi(9; X),

for any vector field X tangent to M.
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It is also easy to see that for any X,Y tangent to M,
(2.8) g(¢iX,Y)+9(X,0:Y) =0, g(¢:X,0:Y) =g(X,Y)-fi(X)fi(Y)
and
(2.9) ¢Uj = —¢;U; = Uk,
where (i, 7, k) is a cyclic permutation of (1,2, 3).

The covariant derivatives of J;,i = 1,2, 3, are given by

VxJi = Po(X)J; — Pj(X)Jx

for any X € TQP",where P;, i = 1,2,3, are local 1-forms on QP™.
Then from (2.1) and (2.2) we obtain
(2.10) VxU; = =P;(X)Ur + Po(X)U; + $;AX
and ‘
(2.11) (Vxs)Y = —P;(X) @Y +Pu(X)$;Y + fi(Y)AX — g(AX,Y)U;
for any vector fields X,Y tangent to M, where (3,7, k) is a cyclic per-
mutation of (1,2, 3).

Since ¢; is skew-symmetric and A is symmetric, (2.10) implies that

4n—1
(212)  divUi= Y g(VaUi,ea) = —Pj(Ux) + Po(Uy),
a=1

where (3, j, k) is a cyclic permutation of (1,2, 3).

From the expression of the curvature tensor of QP",n > 2, the equa-
tions of Gauss and Codazzi are respectively given by

3
213) R(X,Y)Z = g(Y,2)X —g(X,2)Y + > {9($:Y, Z)$: X
1=1
—9(:iX, Z)piY — 29(6: X, Y)¢i Z}
+9(AY, Z)AX - g(AX,Z)AY

and
3

(214)  (VxA)Y = (VyA)X = Y {fi(X)¢Y ~ fi(Y)diX
i=1
+29(X, $:Y)Ui}
for any X,Y,Z tangent to M, where R denotes the curvature tensor
of M ([8)). -
We now put ‘

T:=VyU + VU].U]' + Vy, Uk + (div U;)U; + (div Uj)Uj + (div Ug)Ug
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and take an orthonormal basis {e,}e=1,. 4n—1 Of tangent vectors to M
such that

€n = Gi€1 ..., €y(n-1) = Pi€n_1,
€ap—-1 = ¢j61 yeo ey 63(n_1) = ¢jen—1,
€3n—2 1= QK€L ;. .., €4(n-1) ‘= Pkbn_1,

ean-3:=U; , ean_2:=U; , eg1:=Uj.

Then it follows from (2.10) and (2.12) that

(2.15) T = ¢ AU; + ¢;AU; + ¢ AUy,
We note that T is a global vector field defined on M. For later use we
4n—1

compute div(T) = Z Ve T, e,). Differentiating (2.15) covariantly
i=1

9(
and using (2.4), (2.6), (2.9)—(2.11), and (2.14), we have

3 3 3
le TT‘A) Z g AUi, Uz)) - Zg(A2Ui, Uz) + Z TT(A¢i)2

=1 =1
- Z{g«w)@ez ~ (Vg Aer + (Vo0 A)brer

- (V¢ket )¢g€l, i) +9((Ve, A )¢jel - (V¢]€LA)

+ (v¢kel )pier — (vtﬁzez )érer, U. ) + g((velA)¢kel
— (Vere Aer + (Ve A)pjer — (v¢jez )bier, Uk)}
— 9(Vu, A)Ux — (Vu, A)U;, Us) — 9((Vu, A)U;

— (Vu, AUk, Uj) — 9(Vu, A)U; — (Vu, A)Us, Ug),

or equivalently

3 3
div(T) = (TrA) (Y g(AU, U3) = Y g(A2U;, Uy)
i=1 i=1

3

+ ) Tr(A¢i)? +12(n —1)

i=1

Moreover we should explain model subspaces which will appear in
our Theorem 3.3. We consider the Hopf fibration 7 :

53 S4n+3 7 Q P",
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where S* denotes the Euclidean sphere of curvature 1. In S4"t3 we have
the family of generalized Clifford surfaces whose spheres lie in quater-
nionic subspaces(cf. [7]):

4p 43 4q9+3
M = S4p+3 4q+3 -
pt3dets 2@n+1) | s 22n+1) )’

where p + ¢ = n — 1. Then we have a fibration 7 :

3 s Q
5° —— Mypy3aqrs —— Mpy,

compatible with #. In the special case p = 0, Mg?n—l is called the
geodesic minimal hypersphere of QP™, and is a homogeneous, positively
curved manifold diffeomorphic to the sphere (for details, see [1, 7, 10]).

3. Main results

In order to prove our theorem, we need the following result.

LEMMA 3.1. Let M :be a minimal real hypersurface of QP™. Then

31  g(VPA,4) = D g((Rles,ea)A)en, Aeq) — 9TTA?
a,b

3
+3 3 ligs A,

where [¢;, A] denotes ¢;A — Ad; .
Proof. Let {e;} be an orthonormal frame for M. Then (2.14) implies

(3.2) D (Ve,A)eq = 0.
Thus, from (2.10), (2.11), (2.14), and (3.2) we obtain
(3.3) 9(V?4, 4)
= ) 9((Ve,Ve,A)ea, Acy)
a,b
= Zg((R(Cb, ea)A)eyr — Z{g(vebUi’ ea)Piep
a,b %

+fi(ea)(veb¢i)eb - g(vebUia eb)¢iea - fi(eb)(veb¢i)ea
+29(6a, (vebd)i)eb)Ui + 2g(eaa ¢i6b)vebUi}a Aea)
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= Y g((R(es,ea)A)es, Aeq) — 32 9(A%U;, U) + 3 Z Tr(A¢;)?.

a,b

Since Tr(A¢;)? = —TrA? + g(A%U;, U;) + %H[gbz, A]||?, we obtain
3
2 2 _ 2 A2
(3.4) —3;9(14 Ui,Ui)+32i:Tr(A¢i) =-9TrA +§Z|[[¢z,A]” :

Substituting (3.4) into (3.3), we have our assertion. O

LEMMA 3.2. Let M be a compact and orientable minimal real hy-
persurface in QP™. If the minimum of the sectional curvatures of M
is 3/(4n — 1), then ||[VA|? = 24(n — 1) and g((A¢; — $:4)X,Y) =0,
i=1,2,3.

Proof. We choose an orthonormal frame {e,} of M such that

Ae, = Xgeq, a=1,2,--- 4n — 1.

We denote by K the sectional curvature of M spanned by e, and e
Then we have

Zg((R(ea, ep) A)ea, Aey)
ab

= Z{g(R(ea,eb)Aea,Aeb) — g(AR(eq, ep)eq, Aep}
a,b

1
= 52 (e = 2)Ka
a,b

3 2 2
> - = .
> ST %‘(,\a M)t =3TrA
Consequently, we see
(3.5) 3TrA? — Zg((R(ea, ep)A)eq, Aep) < 0.
: a,b

1
Since we have EA TrA? = |VA|? + g(V2A, A), we obtain

(3.6) /M VA2 %1 = —/M g(V2A, A) * 1.
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From Lemma 3.1, (3.6) and (2.16) we have
0 < [ [IVAIR - 24n-1) Z | g Al ]+ 1

= /[ 9TrA? — Zg((R(ea,eb)A)ea, Aep) —24(n—1)

-Z Il ¢s, A
= /[ 3TrA? — Zg((R(ea,eb)A)ea,Aeb) ] = 1.

a,b
From this and (3.5) we complete the proof. O

Combining Lemma 3.2 and the result of Kwon and Pak[6], we see
that M is Mp?q.

On the other hand if p, ¢ > 1, then the sectional curvature K of Mp,q
takes values 0 for some plane section [10]. But the sectional curvature
K of Mé?n_l satisfies K > 3/(4n — 1).

Consequently, M is the geodesic minimal hypersphere Mg?n_ 1

THEOREM 3.3. Let. M be a compact and orientable minimal real
hypersurface in QP™, If the minimum of the sectional curvatures of M
is 3/(4n —1), then M is isometric to the geodesic minimal hypersphere

Q
MO,n—l'
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