Highly Efficient Gene Delivery into Transfection-Refractory Neuronal and Astroglial Cells Using a Retrovirus-Based Vector

  • Kim, Byung Oh (Department of Applied Biology, College of Life Science and Natural Resources, Sangju National University) ;
  • Pyo, Suhkneung (Division of Immunopharmacology, College of Pharmacy, Sungkyunkwan University)
  • Published : 2005.04.01

Abstract

Introduction of foreign genes into brain cells, such as neurons and astrocytes, is a powerful approach to study the gene function and regulation in the neuroscience field. Calcium phosphate precipitates have been shown to cause cytotoxicity in some mammalian cells and brain cells, thus leading to low transfection efficiency. Here, we describe a retrovirus-mediated gene delivery method to transduce foreign genes into brain cells. In an attempt to achieve higher gene delivery efficiency in these cells, we made several changes to the original method, including (1) use of a new packaging cell line, Phoenix ampho cells, (2) transfection of pMX retroviral DNA, (3) inclusion of 25 mM chloroquine in the transduction, and (4) 3- 5 h incubation of retroviruses with target cells. The results showed that the modified protocol resulted in a range of 40- 60% gene delivery efficiency in neurons and astrocytes. Furthermore, these results suggest the potential of the retrovirus-mediated gene delivery protocol being modified and adapted for other transfection-refractory cell lines and primary cells.

Keywords

References

  1. Abul-Hassan. K., R. Walmsley. and M. Boulton. 2000. Optimization of non-viral gene transfer to human primary retinal pigment epithelial cells. Curr. Eye Res. 20: 361- 366 https://doi.org/10.1076/0271-3683(200005)20:5;1-1;FT361
  2. Baek, C. H. and K. S. Kim. 2003. lacZ- and aph-Based Reporter vectors for in vivo expression technology. J. Microbiol. Biotechnol. 13: 872- 880
  3. Baum, C., J. Dullmann, Z. Li, B. Fehse. J. Meyer, D. A. Williams, and C. von Kalle. 2003. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 15, 101: 2099-2114
  4. Colosimo, A., K. K. Goncz, A. R. Holmes, K. Kunzelmann, G. Novelli, R. W. Malone, M. J. Bennett, and D. C. Gruenert. 2000. Transfer and expression of foreign genes in mammalian cells. Biotechniques 29: 314- 324
  5. Kaiser, S. and M. Toborek. 2001. Liposorne-mediated highefficiency transfection of human endothelial cells. J. Vasc. Res. 38: 133- 143 https://doi.org/10.1159/000051040
  6. Kim, H. S. and T. J. Crow. 2002. Identification and phylogeny of the human endogenous retrovirus HERV-W LTR family in human brain cDNA library and Xq21.3 region. J. Microbiol. Biotechnol. 12: 508- 513
  7. Kofler, P., B. Wiesenhofer, C. Rehrl, G. Baier, G. Stockhammer, and C. Humpel. 1998. Liposome-mediated gene transfer into established CNS cell lines, primary glial cells, and in vivo. Cell Transplant. 7: 175- 185 https://doi.org/10.1016/S0963-6897(97)00162-0
  8. Onishi, M., S. Kinoshita, Y. Morikawa, A. Shibuya, J. Phillips, L. L. Lanier, D. M. Gorman, G. P. Nolan, A. Miyajima, and T. Kitamura. 1996. Applications of retrovirus-mediated expression cloning. Exp. Hematol. 24: 324- 329
  9. Prasolov, V. S. 1989. Retroviral vectors--an effective system for transfer and expression of foreign genes in mammalian cells. Mol. Biol. 23: 348- 355
  10. Smith. E. S., A. Mandokhot, E. E. Evans, L. Mueller, M. A. Borrello, D. M. Sahasrabudhe, and M. Zauderer. 2001. Lethality-based selection of recombinant genes in mammalian cells: Application to identifying tumor antigens. Nat. Med. 7: 967- 972 https://doi.org/10.1038/91017
  11. Song, J. S., S. B. Kim, Y. H. Lee, K. W. Lee, H. H. Jung, M. H. Kim. K. T. Kim, R. Brown, and Y. T. Kim. 2002. Adenovirus-mediated antisense expression of telomerase template RNA induces apoptosis in lung cancer cells. J. Microbiol. Biotechnol. 12: 89- 95
  12. Tomi. M., H. Abukawa, Y. Nagai, T. Hata. H. Takanaga, S. Ohtsuki, T. Terasaki, and K. Hosoya. 2004. Retinal selectivity of gene expression in rat retinal versus brain capillary endothelial cell lines by differential display analysis. Mol. Vis. 10: 537- 543
  13. Watanabe. S. Y., A. M. Albsoul-Younes, T. Kawano, H. Itoh, Y. Kaziro, S. Nakajima. and Y. Nakajima. 1999. Calcium phosphate-mediated transfection of primary cultured brain neurons using GFP expression as a marker: Application for single neuron electrophysiology. Neurosci. Res. 33: 71- 78 https://doi.org/10.1016/S0168-0102(98)00113-8
  14. Wellmann, H., B. Kaltschmidt, and C. Kaltschmidt. 1999. Optimized protocol for biolistic transfection of brain slices and dissociated cultured neurons with a hand-held gene gun. J. Neurosci. Methods 92: 55- 64 https://doi.org/10.1016/S0165-0270(99)00094-1
  15. Willis. D., B. Parameswaran. W. Shen, and G. R. Molloy. 1999. Conditions providing enhanced transfection efficiency in rat pheochromocytoma PC12 cells permit analysis of the activity of the far-upstream and proximal promoter of the brain creatine kinase gene. J. Neurosci. Methods 92: 3- 13 https://doi.org/10.1016/S0165-0270(99)00084-9
  16. Yoon, J. H., P. H. Kim. G. T. Chun. E. Y Choi. and S. W. Yie. 2002. Expression and receptor binding activity of fusion protein from transforming growth $factor-\beta1$ and GFP. J. Microbiol, Biotechnol. 12: 65- 70
  17. Yuan. H., P. Zhai. L. M. Anderson, J. Pan. B. Thimmapaya, E. H. Koo, and N. R. Marquez-Sterling. 1999. Recombinant adenovirus is an appropriate vector for endocytotic protein trafficking studies in cultured neurons. J. Neurosci. Methods 88: 45- 54 https://doi.org/10.1016/S0165-0270(99)00011-4