In Vitro Formation of Protein Nanoparticle Using Recombinant Human Ferritin H and L Chains Produced from E. coli

  • RO HYEON SU (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • PARK HYUN KYU (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • KIM MIN GON (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • CHUNG BONG HYUN (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2005.04.01

Abstract

We have conducted in vitro reconstitution study of ferritin from its subunits FerH and FerL. For the reconstitution, FerH was produced from an expression vector construct in Escherichia coli and was purified from a heat treated cell extract by using one-step column chromatography. FerL was expressed as inclusion bodies. The denatured form of FerL was obtained by a simple washing step of the inclusion bodies with 3 M urea. The reconstitution experiment was conducted with various molar ratios of urea-denatured FerH and FerL to make the ferritin nanoparticle with a controlled composition of FerH and FerL. SDS-PAGE analysis of the reconstituted ferritins revealed that the reconstitution required the presence of more than 40 molar$\%$ of FerH in the reconstitution mixture. The assembly of the subunits into the ferritin nanoparticle was confmned by the presence of spherical particles with diameter of 10 nm by the atomic force microscopic image. Further analysis of the particles by using a transmission electron microscope revealed that the reconstituted particles exhibited different percentages of population with dense iron core. The reconstituted ferritin nanoparticles made with molar ratios of [FerH]/[FerL]=l00/0 and 60/40 showed that 80 to $90\%$ of the particles were apoferritin, devoid of iron core. On the contrary, all the particles formed with [FerH]/[FerL]=85/ 15 were found to contain the iron core. This suggests that although FerH can uptake iron, a minor portion of FerL, not exceeding $40\%$ at most, is required to deposit iron inside the particle.

Keywords

References

  1. Feng, L. and S. Damodaran. 2000. Two dimensional array of magnetoferritin on quarts surface. Thin Solid Films 365: 99-103 https://doi.org/10.1016/S0040-6090(99)00961-X
  2. Grace, J. E., M. E. Van Eden, and S. D. Aust. 2000. Production of recombinant human apoferritin heteromers. Arch. Biochem. Biophys. 384: 116- 122 https://doi.org/10.1006/abbi.2000.2068
  3. Grady. J. K., Z. Zang, T. M. Laue, P. Arosio, and N. D. Chasteen. 2002. Characterization of the H- and L-subunit ratios of ferritins by sodium dodecyl sulfate-capillary gel electrophoresis. Anal. Biochem. 302: 263- 268 https://doi.org/10.1006/abio.2001.5561
  4. Harrison, P. M. and P. Arosio. 1996. The ferritins: Molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta 1275: 161-203 https://doi.org/10.1016/0005-2728(96)00022-9
  5. Hempstead, P. D., S. J. Yewdall, A. R. Fernie, D. M. Lawson, P. J. Artymiuk, D. W. Rice, G. C. Ford, and P. M. Harrison. 1997. Comparison of the three-dimensional structures of recombinant human H and horse L ferritins at high resolution. J. Mol. Bol. 268: 424- 448 https://doi.org/10.1006/jmbi.1997.0970
  6. Hudson, A. J., S. C. Andrews, C. Hawkins. J. M. Williams, M. Izuhara, F. C. Meldrum, S. Mann, P. M. Harrison. and J. R. Guest. 1993. Overproduction, purification and characterization of the Escherichia coli ferritin. Eur. J. Biochem. 218: 985- 995 https://doi.org/10.1111/j.1432-1033.1993.tb18457.x
  7. Kim, S. W., Y. H. Kim, and J. W. Lee. 2001. Thermal stability of human ferritin: Concentration dependence and enhanced stability of an N-terminal fusion mutant. Biochem. Biophys. Res. Commun. 289: 125-129 https://doi.org/10.1006/bbrc.2001.5931
  8. Lee, J., H. Y. Seo, E. S. Jeon, O. S. Park, K. M. Lee, C. U. Park, and K. S. Kim. 2001. Cooperative activity of subunits of human ferritin heteropolymers in Escherichia coli. J. Biochem. Mol. Biol. 34: 365- 370
  9. Levi, S., A. Luzzago, G. Cesareni, A. Cozzi, F. Franceschinelli, A. Albertini, and P. Arosio. 1988. Mechanism of ferritin iron uptake: Activity of the H-chain and deletion mapping of the ferro-oxidase site. J. Biol. Chem. 263: 18086- 18092
  10. Levi, S., J. Salfeld, F. Franceschinelli, A. Cozzi, M. H. Dorner, and P. Arosio. 1989. Expression and structural and functional properties of human ferritin L-chain from Escherichia coli. Biochemistry 28: 5179- 5184 https://doi.org/10.1021/bi00438a040
  11. Levi, S., S. J. Yewdall, P. M. Harrison, P. Santambrogio, A. Cozzi, E. Rovida, A. Albertini, and P Arosio, 1992. Evidence that H- and L-chains have co-operative roles in the iron-uptake mechanism of human ferritin. Biochem. J. 288: 591- 596 https://doi.org/10.1042/bj2880591
  12. Meldrum, F. C, B. R. Heywood, and S. Mann. 1992. Magnetoferritin: In vitro synthesis of a novel magnetic protein. Science 257: 522- 523 https://doi.org/10.1126/science.1636086
  13. Oh, B. K., Y. K. Kim, Y. M. Bae, W. H. Lee, and J. W. Choi. 2002. Detection of Escherichia coli O157:H7 using imrnunosensor based on surface plasmon resonance. J. Microbiol. Biotechnol. 12: 780- 786
  14. Oh, K. S., Y. S. Park, and H. J. Sung. 2002. Expression and purification of an ACE-inhibitory peptide multimer from synthetic DNA in Escherichia coli. J. Microbiol. Biotechnol. 12: 59- 64
  15. Rucker, P., F. M. Torti, and S. V. Torti. 1997. Recombinant ferritin: Modulation of subunit stoichiometry in bacterial expression systems. Protein Eng. 10: 967- 973 https://doi.org/10.1093/protein/10.8.967
  16. Santambrogio, P., S. Levi, A. Cozzi, E. Rovida, A. Albertin, and P. Arosio. 1993. Production and characterization of recombinant heteropolymers of human ferritin H and L chains. J. Biol. Chem. 268: 12744- 12748
  17. Von Darl, M., P. M. Harrison, and W. Bottke. 1994. Expression in Escherichia coli of a secreted invertebrate ferritin. Eur. J. Biochem. 222: 367- 376 https://doi.org/10.1111/j.1432-1033.1994.tb18875.x
  18. Wong, K. K. W., T. Douglas, S. Gider, D. D. Awschalom, and S. Mann. 1998. Biomimetic synthesis and characterization of magnetic proteins magnetoferritin. Chem. Mater. 10: 279- 285 https://doi.org/10.1021/cm970421o
  19. Wong, K. K. W., H. Colfen, N. T. Whilton, T. Dougals, and S. Mann. 1999. Synthesis and characterization of hydrophobic ferritin proteins. J. Inorg, Biochem. 76: 187- 195 https://doi.org/10.1016/S0162-0134(99)00114-2