Immobilization of Glucose Oxidase on Multi-Wall Carbon Nanotubes for Biofuel Cell Applications

  • JUNG SOO KEUN (School of Chemical Engineering and Bioengineering, College of Engineering, The University of Ulsan) ;
  • CHAE YOUNG RAE (School of Chemical Engineering and Bioengineering, College of Engineering, The University of Ulsan) ;
  • YOON JONG MOON (School of Chemical Engineering and Bioengineering, College of Engineering, The University of Ulsan) ;
  • CHO BYUNG WON (Eco-Nano Research Center, Korea Institute of Science and Technology) ;
  • RYU KEUN GARP (School of Chemical Engineering and Bioengineering, College of Engineering, The University of Ulsan)
  • Published : 2005.04.01

Abstract

Glucose oxidase was immobilized on the carboxylated multi-wall carbon nanotubes (MWNT-COOHs) in the presence of a coulping reagent, 1-ethy1-3-(3-dimethylaminopropy1) carbodiimide. Significant amounts of glucose oxidase were also immobilized on MWNT-COOHs without the coupling reagent. Various conditions for the immobilization of glucose oxidase were optimized. Optimal pH for the maximal activity of the immobilized glucose oxidase shifted to 7 from the optimal pH of 6 for the maximal activity of free enzyme due to the carboxy1 groups on the surface of MWNT-COOHs. An electrode of graphite rod with a diameter of 6 mm was fabricated using the immobilized glucose oxidase. The cyclic voltammetry study of the enzyme electrode revealed that the oxidation of glucose and subsequent transfer of electrons from the oxidation of glucose to the electrode were possible by the immobilized glucose oxidase without a mediator, implying that the enzyme electrode can be utilized for the development of biofuel cells.

Keywords

References

  1. Allen, R. M. and H. P. Bennetto. 1993. Microbial fuel cells. Electricity production from carbohydrates. Appl. Biochem. Biotechnol. 39/40: 27- 40 https://doi.org/10.1007/BF02918975
  2. Azamian, B. R., J. J. Davis, K. S. Coleman, C. B. Bagshaw, and M. L. H. Green. 2002. Bioelectrochemical single-walled carbon nanotubes, J. Am. Chem. Soc. 124: 12664- 12665 https://doi.org/10.1021/ja0272989
  3. Azamian, B. R., K. S. Coleman, J. J. Davis, N. Hanson, and M. L. H. Green. 2002. Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. Chem. Commun. 366- 367
  4. Balavoine, F., P. Schultz, C. Richard, V. Mallouh, T. W. Ebbesen, and C. Mioskowski. 1999. Helical crystallization of proteins on carbon nanotubes: A first step towards the development of new biosensors. Angew. Chem. Int. Ed. 38: 1912-1915 https://doi.org/10.1002/(SICI)1521-3773(19990712)38:13/14<1912::AID-ANIE1912>3.0.CO;2-2
  5. Barton, S. C. H. H. Kim, G. Binyamin, Y. Zhang, and A. Heller. 2001. The 'wired' laccase cathode: High current density electroreduction of $O_{2}$ to water at +0.7 V(NHE) at pH 5. J. Am. Chem. Soc. 123: 5802- 5803 https://doi.org/10.1021/ja010408b
  6. Chen. T., S. C. Barton, G. Minyamin, Z. Gao, Y. Zhang, H. H. Kim, and A. Heller. 2001. A miniature biofuel cell. J. Am. Chem. Soc. 123: 8630- 8631 https://doi.org/10.1021/ja0163164
  7. Pham, T H., J. K. Jang. I. S. Chang, and B. H. Kim. 2004. Improvement of cathode reaction of a mediatorless microbial fuel cell. J. Microbiol. Biotechnol. 14: 324- 329
  8. Davis, J. J.. R. J. Coles, and H. A. O. Hill. 1997. Protein electrochemistry at carbon nanotube electrodes. J. Electroanal. Chem. 440: 279- 282
  9. Davis, J. J., M. L. H. Green, H. A. O. Hill, Y. C. Leung, P. J. Sadler, J. Sloan, A. V. Xavier, and S. C. Tsang. 1997. The immobilization of proteins in carbon nanotubes. Inorg. Chim. Acta 272: 261- 266 https://doi.org/10.1016/S0020-1693(97)05926-4
  10. Kang, S. C., H. J. Kim, S. W. Nam, and D. K. Oh. 2002. Surface immobilization on silica of endoxylanase produced from recombinant Bacillus subtilis. J. Microbiol. Biotechnol. 12: 766- 772
  11. Katz, E., I. Willner, and A. B. Kotlyar. 1999. A noncompartmentalized $glucose/O_{2}$ biofuel cell by bioengineered electrode surfaces. J. Electroanal. Chem. 479: 64- 68 https://doi.org/10.1016/S0022-0728(99)00425-8
  12. Kim, H. J., M. S. Hyun, H. S. Chang, and B. H. Kim. 1999. A microbial fuel cell type lactate biosensor using a metal reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 365- 367
  13. Kim, J. R., Y. K. Oh, Y. J. Yoon, E. Y. Lee, and S. H. Park. 2003. Oxygen sensitivity of carbon-monooxide-dependent hydrogen production activity in Citrohactor sp. J. Microbiol, Biotechnol. 13: 717 - 724
  14. Luo, H., Z. Shi, N. Li, Z. Gu, and Q. Zhuang. 2001. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotubes film on a glassy carbon electrode. Anal. Chem. 73: 915- 920 https://doi.org/10.1021/ac000967l
  15. Mano, N., H. H. Kim. Y. Zhang, and A. Heller. 2002. An oxygen cathode operating in a physiological solution. J. Am. Chem. Soc. 124: 6480- 6486 https://doi.org/10.1021/ja025874v
  16. Palmore. G. T. R.. H. Bertschy, S. H. Bergens. and G. M. Whitesides. 1998. A methanolldioxygen biofuel cell that uses $NAD^{+}$ -dependent dehydrogenases as catalysts: Application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. J. Electroanal. Chem. 443: 155- 161 https://doi.org/10.1016/S0022-0728(97)00393-8
  17. Pizzariello. A., M. Stred'ansky, and S. Miertus. 2002. A glucose/hydrogen peroxide biofuel cell that uses oxidase and peroxidase as catalysts by composite bulk-modified bioelectrodes based on a solid binding matrix. Biochemistry 56: 99-105
  18. Reitman, O. A.. E. Katz. A. F. Buckmann, and l. Willner. 2002. Integration of polyaniline/poly(ccrylic acid) films and redox enzymes on electrode supports: An in situ electrochemical/surface plasmon resonance study of the bioclcctrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems. J. Am. Chem. Soc. 124: 6487- 6496 https://doi.org/10.1021/ja012680r
  19. Ryu. K. G., Y. R. Chae, and O. Y. Kwon. 2003. Oxidation of dibenzothiophene catalyzed by surfactant-hemoprotein complexes in anhydrous nonpolar organic solvents. J. Microbiol. Biotechnol. 13: 647- 650
  20. Willner, I.. E. Katz, F. Patolsky, and A. F. Buckmann. 1998. Biofuel cell based on glucose oxidase and microperoxidase11 monolayer-functionalized electrodes. J. Chem, Soc. Perkin Trans. 2: 1817- 1822
  21. Willner, I. and E. Katz. 2000. Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew. Chem. Int. Ed. 39: 1180-1218 https://doi.org/10.1002/(SICI)1521-3773(20000403)39:7<1180::AID-ANIE1180>3.0.CO;2-E
  22. Woo, S. H., J. S. Cho, B. K. Hur, D. H. Shin, K. G. Ryu, and E. K. Kim. 2003. Hydrogen peroxide, its measurement and effect during enzymatic decoloring of congo red. J. Microbiol, Biotechnol. 13: 773- 777