Protection of LLC-PK1 Cells Against Hydrogen Peroxide­Induced Cell Death by Modulation of Ceramide Level

  • Yoo Jae Myung (College of Pharmacy, Chungbuk National University) ;
  • Lee Youn Sun (College of Pharmacy, Chungbuk National University) ;
  • Choi Heon Kyo (College of Pharmacy, Chungbuk National University) ;
  • Lee Yong Moon (College of Pharmacy, Chungbuk National University) ;
  • Hong Jin Tae (College of Pharmacy, Chungbuk National University) ;
  • Yun Yeo Pyo (College of Pharmacy, Chungbuk National University) ;
  • Oh Seik Wan (College of Medicine, Ewha Womans University) ;
  • Yoo Hwan Soo (College of Pharmacy, Chungbuk National University)
  • Published : 2005.03.01

Abstract

Oxidative stress has been reported to elevate ceramide level during cell death. The purpose of the present study was to modulate cell death in relation to cellular glutathione (GSH) level and GST (glutathione S-transferase) expression by regulating the sphingolipid metabolism. LLC­PK1 cells were treated with H$_2$O$_2$ in the absence of serum to induce cell death. Subsequent to exposure to H$_2$O$_2$, LLC-PK1 cells were treated with desipramine, sphingomyelinase inhibitor, and N-acetylcysteine (NAC), GSH substrate. Based on comparative visual observation with H202-treated control cells, it was observed that 0.5 $\mu$M of desipramine and 25 $\mu$M of NAC exhibited about 90 and $95\%$ of cytoprotection, respectively, against H$_2$O$_2$-induced cell death. Desipramine and NAC lowered the release of LDH activity by 36 and $3\%$ respectively, when compared to $71\%$ in H$_2$O$_2$-exposed cells. Cellular glutathione level in 500 $\mu$M H202-treated cells was reduced to 890 pmol as compared to control level of 1198 pmol per mg protein. GST P1-1 expression was decreased in H$_2$O$_2$-treated cells compared to healthy normal cells. In conclusion, it has been inferred that H$_2$O$_2$-induced cell death is closely related to cellular GSH level and GST P1-1 expression in LLC-PK1 cells and occurs via ceramide elevation by sphingomyelinase activation.

Keywords

References

  1. Cui, J., Engelman, R. M., Maulik, N., and Das, D. K., Role of ceramide in ischemic preconditioning. J. Am. Coll. Surg., 198, 770-777 (2004) https://doi.org/10.1016/j.jamcollsurg.2003.12.016
  2. Cumming, R. C., Lightfood, J., Beard, K., Youssoufian, H., OBrien, P. J., and Buchwald, M., Fanconi anemia group C protein prevents apoptosis in hematopoietic cells through redox regulation of GSTP1. Nat. Med., 7, 814-820 (2001) https://doi.org/10.1038/89937
  3. Cutler, R. G., Kelly, J., Storie, K., Pedersen, W. A., Tammara, A., Hatanpaa, K., Troncoso, J. C., and Mattson, M. P., Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimers disease. Proc. Natl. Acad. Sci. U.S.A., 101, 2070-2075 (2004) https://doi.org/10.1073/pnas.0305799101
  4. Dbaibo, G. S., Pushkareva, M. Y., Rachid, R. A., Alter, N., Smyth, M. J., Obeid, L. M. and Hannun, Y. A., p53-dependent ceramide response to genotoxic stress. J. Clin. Invest., 102, 329-339 (1998) https://doi.org/10.1172/JCI1180
  5. Dobrowsky, R. T., Kamibayashi, C., Mumby, M. C., and Hannun, Y. A., Ceramide activates heterotrimeric protein phosphatase 2A. J. Biol. Chem., 268, 15523-15530 (1993)
  6. Goldkorn, T., Ravid, T., and Khan, E. M., Life and death decisions: ceramide generation and EGF receptor trafficking are modulated by oxidative stress. Antioxid. Redox. Signal., 7, 119-128 (2005) https://doi.org/10.1089/ars.2005.7.119
  7. Grassme, H., Jendrossek, V., Bock, J., Riehle, A., and Gulbins E., Ceramide-rich membrane rafts mediate CD40 clustering. J. Immunol., 168, 298-307 (2002) https://doi.org/10.4049/jimmunol.168.1.298
  8. Hannun, Y. A. and Luberto, C., Ceramide in the eukaryotic stress response. Cell Biol., 10, 73-80 (2000) https://doi.org/10.1016/S0962-8924(99)01694-3
  9. Hannun, Y. A., Luberto, C., and Argraves, K. M., Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry, 40, 4893-4903 (2001) https://doi.org/10.1021/bi002836k
  10. Jaffrezou, J. P., Bruno, A. P., Moisand, A., Levade, T., and Laurent, G., Activation of a nuclear sphingomyelinase in radiation-induced apoptosis. FASEB J., 15, 123-133 (2001) https://doi.org/10.1096/fj.00-0305com
  11. Jensen, J.-M., Folster-Holst, R., Baranowsky, A., Schuck, M., Winoto-Morbach, S., Neumann, C., Schutze, S., and Proksch, E., Impaired sphingomyelinase activity and epidermal differentiation in atopic dermatitis. J. Invest. Dermatol., 122, 1423-1431 (2004) https://doi.org/10.1111/j.0022-202X.2004.22621.x
  12. Lavrentiadou, S. N., Chan, C., Kawcak, T. N., Ravid, T., Tsaba, A., van der Vliet, A., Rasooly, R., and Goldkorn, T., Ceramidemediated apoptosis in lung epithelial cells is regulated by glutathione. Am. J. Respir. Cell. Mol. Biol., 25, 676-684 (2001) https://doi.org/10.1165/ajrcmb.25.6.4321
  13. Lee, J. T., Xu, J., Lee, J. M., Ku, G., Han, X., Yang, D.I., Chen, S., and Hsu, C. Y., Amyloid-$\beta$ induces oligodendrocyte death by activating the neutral sphingomyelinase-ceramide pathway. J. Cell. Biol., 164, 123-131 (2004) https://doi.org/10.1083/jcb.200307017
  14. Mathias, S., Dressler, K. A., and Kolesnick, R. N., Characterization of a ceramide-activated protein kinase: stimulation by tumor necrosis factor $\alpha$. Proc. Natl. Acad. Sci. U.S.A., 88, 10009-10013 (1991) https://doi.org/10.1073/pnas.88.22.10009
  15. Mathias, S., Pena, L. A., and Kolesnick, R. N., Signal transduction of stress via ceramide. Biochem. J., 335, 465-480 (1998) https://doi.org/10.1042/bj3350465
  16. Mihm, S., Ennen, J., Pessara, U., Kurth, R., and Dorge, W., Inhibition of HIV-1 replication and NF-kappa B activity by cysteine and cysteine derivatives. AIDS, 5, 497-503 (1991) https://doi.org/10.1097/00002030-199105000-00004
  17. Morceau, F., Duvoix A., Delhalle, S., Schnekenburger, M., Dicato, M., and Diederich, M., Regulation of glutathione Stransferase P1-1 gene expression by NF-kappaB in tumor necrosis factor alpha-treated K562 leukemia cells. Biochem. Pharmacol., 67, 1227-1238 (2004) https://doi.org/10.1016/j.bcp.2003.10.036
  18. Papp, S., Robaire, B., and Hermo, L., Immunocytochemical localization of the Ya, Yc, Yb1, and Yb2 subunits of glutathione S-transferases in the testis and epididymis of adult rats. Microsc. Res. Tech., 30, 1-23 (1995) https://doi.org/10.1002/jemt.1070300102
  19. Pickett, C. B. and Lu, A. Y., Glutathione S-transferases: gene structure, regulation, and biological function. Annu. Rev. Biochem., 58, 743-764. (1989) https://doi.org/10.1146/annurev.bi.58.070189.003523
  20. Rao, A. V. and Shaha, C., Role of glutathione S-transferases in oxidative stress-induced male germ cell apoptosis. Free Radic. Biol. Med., 29, 1015-1027 (2000) https://doi.org/10.1016/S0891-5849(00)00408-1
  21. Salinas, A. E. and Wong, M. G., Glutathione S-transferases - a review. Curr. Med. Chem., 6, 279-309 (1999)
  22. Santana, P., Pena, L. A., Haimovitz-Friedman, A., Martin, S., Green, D., McLoughlin, M., Cordon-Cardo, C., Schuchman, E. H., Fuks, Z., and Kolesnick, R., Acid sphingomyelinasedeficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell, 86, 189-199 (1996) https://doi.org/10.1016/S0092-8674(00)80091-4
  23. Schreck, R., Rieber, P., and Baeuerle, P. A., Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J., 10, 2247-2258 (1991)
  24. Schulze-Osthoff, K., Beyaert, R., Vandevoorde, V., Haegeman, G., and Fiers, W., Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J., 12, 3095-3104 (1993)
  25. Sugiura, M., Kono, K., Liu, H., Shimizugawa, T., Minekura, H., Spiegel, S., and Kohama, T., Ceramide kinase, a novel lipid kinase. J. Biol. Chem., 277, 23294-23300 (2002) https://doi.org/10.1074/jbc.M201535200
  26. Wasserman, W. W. and Fahl, W. E., Functional antioxidant responsive elements. Proc. Natl. Acad. Sci. U.S.A., 94, 5361- 5366 (1997) https://doi.org/10.1073/pnas.94.10.5361
  27. Yang, Y., Cheng, J. Z., Singhal, S. S., Saini, M., Pandya, U., Awasthi, S., and Awasthi Y. C., Role of glutathione Stransferases in protection against lipid peroxidation. Overexpression of hGST A2-2 in k562 cells protects against hydrogen peroxide-induced apoptosis and inhibits JNK and caspase 3 activation. J. Biol. Chem., 276, 19220-19230 (2001) https://doi.org/10.1074/jbc.M100551200
  28. Yin, Z., Ivanov, V. N., Habelhah, H., Tew, K., and Ronai, Z., Glutathione S-transferase P elicits protection against $H_2O_2$-induced cell death via coordinated regulation of stress kinases. Cancer Res., 60, 4053-4057 (2000)
  29. Yu, M. U., Yoo, J. M., Lee, Y. M., Hong, J. T., Oh, K. W., Song, S. K., Yun, Y. P., Yoo, H. S., and Oh, S., Altered de novo sphingolipid biosynthesis is involved in the serumdeprivation- induced cell death in LLC-PK1 cells. J. Toxicol. Environ. Health A, 67, 2085-2094 (2004) https://doi.org/10.1080/15287390490515065