DOI QR코드

DOI QR Code

Electrical Characteristics of p+/n Junctions with Cu/Ti-capping/NiSi Electrode

Cu/Ti-cappng/NiSi 전극구조 p+/n 접합의 전기적 특성

  • Lee Keun-Yoo (Dept. of Electronic Materials Engineering, The University of Suwon) ;
  • Kim Ju-Youn (Division of Materials Science and Engineering, Hanyang University) ;
  • Bae Kyoo-Sik (Dept. of Electronic Materials Engineering, The University of Suwon)
  • 이근우 (수원대학교 전자재료공학과) ;
  • 김주연 (한양대학교 재료공학부) ;
  • 배규식 (수원대학교 전자재료공학과)
  • Published : 2005.05.01

Abstract

Ti-capped NiSi contacts were formed on $p^+/n$ junctions to improve the leakage problem and then Cu was deposited without removing the Ti-capping layer in an attempt to utilize as a diffusion barrier. The electrical characteristics of these $p^+/n$ diodes with Cu/Ti/NiSi electrodes were measured as a function of drive-in RTA(rapid-thermal annealing) and silicidation temperature and time. When drive-in annealed at $900^{\circ}C$, 10 sec. and silicided at $500^{\circ}C$, 100 sec., the diodes showed the most excellent I-V characteristics. Especially, the leakage current was $10^{-10}A$, much lower than reported data for diodes with NiSi contacts. However, when the $p^+/n$ diodes with Cu/Ti/NiSi contacts were furnace-annealed at $400^{\circ}C$ for 40 min., the leakage current increased by 4 orders. The FESEM and AES analysis revealed that the Ti-capping layer effectively prohibited the Cu diffusion, but was ineffective against the NiSi dissociation and consequent Ni diffusion.

Keywords

References

  1. H. Iwai, T. Ohguro and S.I. Ohmi, Microelectronic Engineering, 60, 157 (2002) https://doi.org/10.1016/S0167-9317(01)00684-0
  2. A. Lauwers, J. A. Kittle, M. J. H. Van Dal, O. Chamirian, M. A. Pawlak, M. de Potter, R. Lindsay, T. Raymakes, X. Pages, B. Mebarki, T. Mandrekar and K. Maex, Materials Science and Engineering B, 114-115, 29 (2004) https://doi.org/10.1016/j.mseb.2004.07.028
  3. C. Lavoie, F.M. d'Heurle, C. Detavernier and C. Cabral Jr, Microelectronic Engineering, 20, 144 (2003) https://doi.org/10.1016/S0167-9317(03)00380-0
  4. W. K. Kwak, B. R. Cho, S. Y. Yoon, S. J. Park and J. Jang, IEEE-EDL, 21(3), 107 (2000) https://doi.org/10.1109/55.823571
  5. Y. S. Kim, M. S. Kim and S. K. Joo, Kor J. Mater. Res., 14(7), 477 (2004) https://doi.org/10.3740/MRSK.2004.14.7.477
  6. T. H. Yang, G. Luo, E. Y. Chang, T. Y. Yang, H. C. Tseng and C. Y. Chang, IEEE-EDL, 24(9), 544 (2003) https://doi.org/10.1109/LED.2003.815944
  7. N. G. Toledo, P. S. Lee and K. L. Pey, Thin Solid Films, 462-263, 202 (2004) https://doi.org/10.1016/j.tsf.2004.05.099
  8. S. J. Park, K. W. Lee. J. Y. Kim, H. T. Jun and K. S. Bae, Kor J. Mater. Res., 13(7), 460 (2003) https://doi.org/10.3740/MRSK.2003.13.7.460
  9. S.-Q. Wang, MRS Bulletin, Aug., 30 (1994)
  10. Y. Shacham-Diamond, J. of Electronic Materials, 30(4), 336 (2001) https://doi.org/10.1007/s11664-001-0040-0
  11. S. J. Hong and J. G. Lee, Kor J. Mater. Res., 12(11), 889 (2002) https://doi.org/10.3740/MRSK.2002.12.11.889
  12. J. S. Byun, D. H. Kim, W. S. Kim and H. J. Kim, J. Appl. Phys., 78(3), 1725 (1995) https://doi.org/10.1063/1.360201
  13. V. Probst, H. Schaber. A. Mitwalsky, H. Kabza, L. V. den Hove and K. Maex, J. Appl. Phys., 70(2), 708 (1991) https://doi.org/10.1063/1.349626